首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reduction of friction and wear for parts made of aluminium by diamond-like carbon coatings Reduction of friction and wear of machine parts and tools is usually achieved by separating the participating surfaces. This is predominantly done by liquid lubricants. Solid lubricant coatings replace them where hydrodynamic lubrication is not possible or not active. Among the hard and friction reducing layers diamond-like carbon films (DLC) have distinguished themselves as the most interesting representatives. They are deposited on metallic and ceramic parts in a glow discharge of a hydrocarbon gas at temperatures between 150 and 200 °C. Those low deposition temperatures, their very low dry sliding friction coefficient of 0.05 to 0.1, and an elastic recovery of 90 % differentiate them from PVD coatings to a high degree. DLC can also be deposited on light metals with thicknesses of more than 30 μm. For closed films an outstanding protection against corrosion is established. Machining and forming of light metals can be done without cooling lubricants.  相似文献   

2.
Solid lubricants: a review   总被引:2,自引:1,他引:1  
The fundamental mechanisms of solid lubrication are reviewed with examples from well-known solid lubricants like the transition metal dichalcogenides and diamond-like carbon families of coatings. Solid lubricants are applied either as surface coatings or as fillers in self-lubricating composites. Tribological (friction and wear) contacts with solid lubricant coatings typically result in transfer of a thin layer of material from the surface of the coating to the counterface, commonly known as a transfer film or tribofilm. The wear surfaces can exhibit different chemistry, microstructure, and crystallographic texture from those of the bulk coating due to surface chemical reactions with the surrounding environment. As a result, solid lubricant coatings that give extremely low friction and long wear life in one environment can fail to do so in a different environment. Most solid lubricants exhibit non-Amontonian friction behavior with friction coefficients decreasing with increasing contact stress. The main mechanism responsible for low friction is typically governed by interfacial sliding between the worn coating and the transfer film. Strategies are discussed for the design of novel coating architectures to adapt to varying environments.  相似文献   

3.
Diamond‐like carbon thin films enhance efficiency — laser arc deposition of ta‐C Rising prices for fossil fuels as well as the increasing effects of the climate change due to the emission of greenhouse gases reveal the necessity of saving energy. Low friction coatings have an enormous potential in saving energy. Carbon based coatings — named as DLC coatings — are especially well suited for low friction coatings. In particular hydrogen‐free tetrahedral amorphous carbon (ta‐C) coatings are of great interest due to their extraordinary low wear properties. In addition they show excellent low friction properties and especially in combination with specific lubricants the so‐called super low friction effect. For the deposition of ta‐C coatings PVD methods have to be applied instead of CVD methods as it is the case for conventional DLC coatings. We have developed a deposition method which is based on a pulsed arc steered by a laser (Laser‐Arc). This allows us to use large cathodes resulting in a high long‐term stability. Furthermore, the carbon plasma source can be combined with a filtering unit removing almost all droplets and particles, which usually are characteristic for an arc process. The resulting Laser‐Arc source allows for the deposition of smooth and virtually defect‐free ta‐C coatings with a competitive deposition rate.  相似文献   

4.
Increasingly more demanding and very stringent operating conditions envisioned for future mechanical and tribological systems will certainly require new materials and coatings that are superhard and at the same time self-lubricating.For example, dry machining is a much desired practice in manufacturing sector, but it is currently very difficult to realize mainly because of high friction and severe wear losses. However, recent advances in surface engineering and coating technologies may enable design and production of novel coatings architectures that can combine superhardness with self-lubricating properties in both the disordered or nanostructured forms. Recently developed nearly frictionless carbon films, ultrananocrystalline diamond and carbide derived carbon films can dramatically lower friction and at the same time reduce wear under very harsh sliding conditions. These coatings can be formulated in such a way that they can substantially increase the load-bearing capacity of sliding surfaces and hence improve their resistance to scuffing. It is also possible to design nano-composite coatings that can form self-replenishing and-lubricating tribofilms on their sliding surfaces and thus help increase the overall lubricity of these surfaces. In this paper, an overview of recent advances in disordered and nanostructured carbon films will be presented. Specific examples will be given to demonstrate the superior performance and durability of such novel coatings under a very wide range of tribological conditions. The major emphasis is placed on super low friction carbon films. The fundamental tribological mechanisms that control their exceptional friction and wear behaviors are also discussed.  相似文献   

5.
Properties and applications of electroless nickel composite coatings This paper discusses the variety of composite electroless coatings used in different industrial applications. The inclusion of particulate matter within electroless nickel deposits can add entirely new properties to the plated layer. Composites with hard particles like diamond, silicon carbide and boron carbide provide greater wear resistance and the possibility for adjustable friction properties. Composite electroless nickel with diamond or ceramics has found wide applications in the textile, automotive and mechanical engineering industry. Friction joints in automotive engines constitute an important field of application for diamond coatings. Modern internal combustion engine designs require that the crankshaft and camshaft be fitted at a specific relative angle. In order to establish the correct angle during assembly and maintain it over the life of the engine, axial press‐fit joints in combination with centrally located retention bolts are employed. Failure of either the joints or the bolts can result in serious damage to the engine. The torque transfer ability of these engine components can be significantly increased by incorporating a friction foil that is diamond‐coated on both sides. Composite coatings with coarser diamond particles can be used for the coating of precision tools in the semiconductor industry. Enhanced lubricity can be achieved by incorporating solid lubricants in electroless nickel deposits. Composite coatings with PTFE or PFA offers non‐stick surfaces with antiadhesive properties and good resistance against adhesive wear. Because of the temperature and softness limitations these coatings are best suited for lower temperature and light loading applications. Electroless nickel boron nitride coatings can withstand temperatures up to 600 °C. This coating reduces coefficient of friction and wear in dynamic applications. A further application is the coating of molds for rubber and plastic components.  相似文献   

6.
Potentials of Innovative PVD Coatings Hard PVD‐Coatings for wear protection of tools are commonly used in many production purposes for about 20 years. Based on the experiences made with PVD‐processes for deposition of hard coatings “tribological coatings” with optimized friction properties have been developed. These friction optimized coatings can take over some of the lubricants functions in unlubricated processes. Today in many operations the use of additional lubricants can be avoided or at least minimized using innovative tool coatings. As a consequence expensive cleaning processes of the parts can be omitted and environmental pollution is reduced.  相似文献   

7.
Superior wear resistance of diamond and DLC coatings   总被引:1,自引:0,他引:1  
As the hardest known material, diamond and its coatings continue to generate significant attention for stringent applications involving extreme tribological conditions. Likewise, diamond-like carbon (DLC, especially the tetragonal amorphous carbon, ta-C) coatings have also maintained a high level interest for numerous industrial applications where efficiency, performance, and reliability are of great importance. The strong covalent bonding or sp3-hybridizaiton in diamond and ta-C coatings assures high mechanical hardness, stiffness, chemical and thermal stability that make them well-suited for harsh tribological conditions involving high-speeds, loads, and temperatures. In particular, unique chemical and mechanical nature of diamond and ta-C surfaces plays an important role in their unusual friction and wear behaviors. As with all other tribomaterials, both diamond and ta-C coatings strongly interact with the chemical species in their surroundings during sliding and hence produce a chemically passive top surface layer which ultimately determines the extent of friction and wear. Thick micro-crystalline diamond films are most preferred for tooling applications, while thinner nano/ultranano-crysalline diamond films are well-suited for mechanical devices ranging from nano- (such as NEMS) to micro- (MEMS and AFM tips) as well as macro-scale devices including mechanical pump seals. The ta-C coatings have lately become indispensable for a variety of automotive applications and are used in very large volumes in tappets, piston pins, rings, and a variety of gears and bearings, especially in the Asian market. This paper is intended to provide a comprehensive overview of the recent developments in tribology of super-hard diamond and DLC (ta-C) films with a special emphasis on their friction and wear mechanisms that are key to their extraordinary tribological performance under harsh tribological conditions. Based on the results of recent studies, the paper will also attempt to highlight what lies ahead for these films in tribology and other demanding industrial applications.  相似文献   

8.
In this article technological developments in the field of modified diamond‐like‐carbon (DLC) coatings are described. The most well‐known properties of such DLC‐coatings are high hardness, high wear resistance, a very low friction coefficient (e.g. vs. Steel) and a very good chemical inertness. By doping the amorphous network with non‐metallic elements it is possible to influence the wettability of the DLC coatings over a wide range. This possibility to prepare a wear resistant sticking or non‐sticking DLC‐film opens a wide field of very different technical applications.  相似文献   

9.
Mechanical load can drastically affect the properties of orthopedic implant materials. Damage of these materials usually occurs in contact surfaces, caused by abrasion, adhesion, fretting, delamination, pitting and fatigue depending on friction, lubrication, contact area, surface finish and level of loads (stresses).Carbon-based films are biocompatible with good bearing capacity, wear resistance, corrosion resistance and have a low coefficient of friction. However, great intrinsic stress prevents their wider application, mainly as implant coatings. To reduce this undesirable effect special deposition procedures are under development and/or the films are doped with suitable elements. It must be emphasized that DLC is not a material but a group of materials with a variety of properties. The relationships between the fretting wear behavior and mechanical properties of films based on carbon deposited by DC using the pulsed arc discharge PVD nitrogen doped (a-C) and the filtered pulsed arc discharge deposition system (ta-C) were tested.The composition of carbon films (sp3, sp2) was determined by Raman spectroscopy. Mechanical properties of elastic modulus and hardness were determined by a NanoTest apparatus with diamond Berkovich tip using the Oliver-Pharr procedure and adhesion was measured by nanoscratch tests. Tribological behavior was analyzed by fretting tests with a corundum ball under dry sliding lubricated conditions.The good performance of the hard carbon coatings is often discussed. Results from this study of fretting and the associated lubrication (bovine serum) show that ta-C coatings, despite their high hardness, have very low friction coefficients and low volume losses.  相似文献   

10.
By periodic variation of the deposition conditions nanometer multilayers of amorphous carbon films of varying density are deposited. Such carbon–carbon multilayers can be used for the preparation of X‐ray mirrors of extreme irradiation stability and the optimization of tribological carbon coatings. Combining these techniques with concepts demonstrated in the preparation of fullerenes and nanotubes leads to graphitic films of very high hardness. Potential applications involve such different fields as field emission cathodes for flat panel displays and low‐friction wear‐protecting films.  相似文献   

11.
陶瓷的润滑问题   总被引:3,自引:0,他引:3  
本文阐述了并分析了陶瓷材料的摩擦磨损、润滑研究现状,由于陶瓷的化学惰性,传统的润滑剂,添加剂在陶瓷表面的吸附力较弱,且很难在边界润滑下与表面发生摩擦化学反应形成极压润滑膜,传统润滑剂对陶瓷铁润滑效果与润滑金属相比要差科多,尽管在干摩时陶瓷材料磨损率比金属小得多,但仍比实际应用时要求的磨损率高必个量级。  相似文献   

12.
The influence of plastic deformation of the substrate on the tribological properties of diamond like carbon (DLC) films was investigated in DLC films-steel substrate system. The tribological properties of DLC films deposited on different hardness steel were evaluated by a ball on disk rotating-type friction tester at room temperature under different environments. In dry nitrogen, DLC films on soft steel exhibited excellent tribological properties, especially obvious under high load (such as 20 N and 50 N). However, DLC films on hard steel were worn out quickly at load of 20 N. Plastic deformation was observed on soft steel after tribological tests. The width and depth of plastic deformation track increased with increase of the experimental load. Super low friction and no measurable wear were kept in good condition even large plastic deformation under high load conditions in DLC films-soft steel system. In open air, DLC films on soft steel exhibited high coefficient of friction and DLC films on ball were worn out quickly. Plastic deformation was not observed on soft steel because the contact area increased and the thick hardened layer on contact surface were formed by DLC films and debris particles together on the steel substrate. The wear track on steel became deep and wide with increase of loads and DLC films were worn out. The experimental results showed that super low friction and high wear resistance of DLC films on soft steel can be attributed to the good adhesion and plastic deformation. Plastic deformation played an active role in the tribological properties of DLC films on soft steel in the present work.  相似文献   

13.
HPPMS high‐performance plasmas for the deposition of diamond‐like carbon coatings Diamond‐like carbon (DLC) coatings Diamond‐like carbon (DLC) coatings can be used in many different applications, due to their adjustable properties like hardness as wear reduction. Regarding to the synthesis of these coatings, research is upon the High Power Pulsed/Impulse Magnetron Sputtering (HPPMS/HiPIMS), which in contrast to conventional processes like the Pulsed Laser Deposition (PLD) provides smooth coatings and therefore less postprocessing. Previous to the coating deposition in‐situ plasma analysis can be utilized to identify the process parameters. The aim relevantof this work was to identify process parameters which enable to generate a high amount and energy of carbon ions, which are required to synthesize hard DLC coatings. Regarding to the carbon ionization the promising process parameters mixture and pressure of the process gas as well as the HPPMS pulse parameters were varied. Finally, process parameters for the DLC coating deposition could be derived from these investigations.  相似文献   

14.
Tribological behavior of superhard amorphous carbon films The tribological behaviour of amorphous carbon films is determined by monomolecular covering layers strongly attached to the surface. They cause the very low friction in normal humid air, their absence in dry air or vacuum leads to high friction. Any lubricants usually do not improve the tribological behaviour in comparison to air. However for non‐hydrogenated ta‐C films by attachment of specially adapted lubricants an additionally marked reduction of friction is possible.  相似文献   

15.
Diamond-like carbon (DLC) coatings are nowadays successfully applied on industrial components like pistons, piston rings and bearings in lubricated tribological contacts due to friction and wear reducing effects. In contradiction thereto, todays lubricants and additives are designed for tribological steel/steel contacts, whereby the knowledge on tribochemical layer formation on steel surfaces is comprehensive in contrast to the physical-chemical interactions between diamond-like carbon coatings, lubricants and additives. Therefore the formation mechanisms of zinc, molybdenum, sulfur and phosphorus containing reaction layers on a zirconium modified diamond-like carbon coating a-C : H : Zr (ZrCg) in lubricated tribological contacts were analyzed by means of pin-on-disc (PoD) tribometer by varying the distances from s = 200 m–3,000 m under boundary and mixed friction conditions at T = 90 °C and a contact pressure p = 1,300 MPa regarding the application of diamond-like carbon coatings on gears. The base lubricant poly-alpha-olefin (PAO) was formulated using the anti-wear (AW) and extreme pressure (EP) additive zinc dialkyldithiophosphate (ZnDTP) and the friction modifier (FM) additive molybdenum dialkyldithiophosphate (MoDTP). The chemical composition of the tribochemical reaction layers by means of and Raman spectroscopy and x-ray photoelectron spectroscopy (XPS) as well as for the thickness differ significantly by varying the additivation.  相似文献   

16.
The wear of existing metal-on-metal (MOM) hip prostheses (1 mm3/million cycles) is much lower than the more widely used polyethylene-on-metal bearings (30-100 mm3/million cycles). However, there remain some potential concerns about the toxicity of metal wear particles and elevated metal ion levels, both locally and systemically in the human body. The aim of this study was to investigate the wear, wear debris and ion release of fully coated surface engineered MOM bearings for hip prostheses. Using a physiological anatomical hip joint simulator, five different bearing systems involving three thick (8-12 microm) coatings, TiN, CrN and CrCN, and one thin (2 microm) coating diamond like carbon (DLC) were evaluated and compared to a clinically used MOM cobalt chrome alloy bearing couple. The overall wear rates of the surface engineered prostheses were at least 18-fold lower than the traditional MOM prostheses after 2 million cycles and 36-fold lower after 5 million cycles. Consequently, the volume of wear debris and the ion levels in the lubricants were substantially lower. These parameters were also much lower than in half coated (femoral heads only) systems that have been reported previously. The extremely low volume of wear debris and concentration of metal ions released by these surface engineered systems, especially with CrN and CrCN coatings, have considerable potential for the clinical application of this technology.  相似文献   

17.
Nanocrystalline diamond films have been deposited using a microwave plasma consisting of argon, 2–10% hydrogen and a carbon precursor such as C60 or CH4. It was found that it is possible to grow the diamond phase with both carbon precursors, although the hydrogen concentration in the plasma was 1–2 orders of magnitude lower than normally required in the absence of the argon. Auger electron spectroscopy, X-ray diffraction measurements and transmission electron microscopy indicate the films are predominantly composed of diamond. Surface roughness, as determined by atomic force microscopy and scanning electron microscopy indicate the nanocrystalline films grown in low hydrogen content plasmas are exceptionally smooth (30–50 nm rms) to thicknesses of 10 m. The smooth nanocrystalline films result in low friction coefficients (μ = 0.04–0.06) and low average wear rates as determined by ball-on-disk measurements.  相似文献   

18.
Solid lubricants that are effective over an extreme range of operating temperatures are necessary for the development of new generation high-performance gas turbine engines with increased propulsion capability. While oxides have the potential to perform as high-temperature lubricants, they typically have high friction and create abrasive wear debris at low temperature. The objective of this work was to create oxides that have good tribological properties at room temperature through control of microstructure and stoichiometry. Zinc oxide films were grown by pulsed-laser deposition. The stoichiometry and microstructure of the films were controlled by adjusting substrate temperature and oxygen partial pressure during pulsed-laser deposition. Chemistry and microstructure were probed using SEM, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy. Friction coefficients and wear life were measured using a ball-on-flat tribometer. The degree of similarity of the coatings to bulk ZnO was RT, vac<RT, O2<300°C, vac<300°C, O2. Coatings with oxygen deficiency and nanoscale structure have low friction (i.e. μ<0.2) and long wear lives (i.e., greater than 106 cycles) at room temperature. As the chemistry and crystal structure of a coating approaches that of bulk ZnO, its tribological properties degrade and can become load/speed sensitive. An important result of this study is that oxides can be made to provide good tribological properties at room temperature. Thus, there is significant potential to produce low-friction, low-wear oxide coatings for wide-temperature range applications by controlling nanostructure and oxygen vacancies. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

19.
Hybrid plasma CVD of diamond-like carbon (DLC) at low temperatures   总被引:1,自引:0,他引:1  
Diamond-like carbon coatings have been deposited onto various substrates at 100–150°C using a hybrid plasma assisted chemical vapour deposition technique activated by radio frequency at 13.56 MHz. The coatings have been characterized using a number of techniques including scanning electron microscopy, Raman spectroscopy, thermoanalysis and pin-on-disc wear testing. Results show the films to be diamond like, with the addition of nitrogen (prior to deposition) promoting the formation of crystallites. In addition the condition and type of substrate have been found to have a strong influence on the structural characteristics of the deposited diamond-like films. SEM analysis of diamond-like carbon coatings deposited onto metal matrix composite materials such as Si-Al MMC is reported. The hybrid CVD technology enabled films to be deposited evenly onto the porous MMC structure. Commercially manufactured drills, coated with DLC and titanium nitride (TiN), have been compared to examine their cutting wear resistance characteristics. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

20.
Ion-plated coatings of carbon have been deposited on several metal substrates The coatings are very adherent and in contrast with vacuum-evaporated films have a highly graphitic crystal structure. They are wear resistant and have a low friction coefficient. The method of deposition and the crystallographic and tribological studies will be described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号