首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A numerical model is presented in this paper, for predicting capillary tube performance using new alternative refrigerants to CFC‐502. The model has been established after the fluid flow conservation equations written for a homogeneous azeotropic refrigerant fluid flow under saturated, sub‐cooled and two‐phase conditions. The study was limited to the following azeotropic mixtures; R‐507, R‐404A, and quaternary mixture (R32/R125/R134a/R143a). Numerical results showed that the proposed model in question fairly simulated our experimental data and fairly predicted the capillary tube behaviour under different conditions. The results also indicated that a system using R‐507 would experience smaller pressure drop across the capillary compared to the other alternatives under question. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, a numerical model is presented for predicting capillary tube performance using new ternary mixtures proposed as alternatives to R 22. The model has been established after the fluid flow conservation equations written for a homogeneous refrigerant fluid flow under saturated, subcooled and two- pase conditions. Numerical results showed that the proposed model in question fairly simulated experimental on ternary refrigerant mixtures and fairly predicted the capillary tube behaviour under the investigated; subcooled, saturated, and two-phase flow conditions. © 1998 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, an experimental study is presented to enhance our understanding of the capillary tube behaviour using some new alternative refrigerants to HCFC‐22. An experimental setup fully instrumented was used to gather the behaviour of three different capillary tube geometries with R‐410B, R‐407C, and R‐410A under various conditions; saturated, sub‐cooled and two‐phase. Experimental data showed that R‐410B has the highest pressure drop along the capillary tubes compared to the alternatives under question and also has the highest temperature drop along the capillary tube. The data also showed that R‐407C has similar capillary behaviour to that of R‐22. The results clearly demonstrated that the pressure drop is significantly influenced by the diameter of the capillary tube, the type of refrigerant and inlet conditions to the capillary tube. The data also showed that the capillary pressure drop decreases with the increase of the capillary diameter. There is clear evidence that the component concentration of the refrigerant mixture significantly affects the capillary tube behaviour and particularly the pressure drop along the capillary tube length. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
In the present work, a homogenous model including the metastable liquid region has been developed for the adiabatic flow of refrigerant through the spiral capillary tube. In order to develop the model, both liquid region and two phase region have been discretized into infinitesimal segments to take into account the effect of varying radius of curvature of spiral tube on the friction factor. The effect of the pitch of spiral on the mass flow rate of refrigerant and capillary tube length has been investigated. A comparison of flow characteristics of refrigerant R22 and its alternatives, i.e., R407C and R410A has been made at different operating conditions at the inlet of the capillary tube and it has been found that the flow characteristics of R22 and R407C are almost similar for a given condenser pressure and degree of subcooling at the inlet of capillary tube.  相似文献   

5.
A capillary tube‐based CO2 heat pump is unique because of the transcritical nature of the system. The transcritical cycle has two independent parameters, pressure and temperature, unlike the subcritical cycle. A comparative study for various operating conditions, based on system COP and exergetic efficiency, of a capillary tube and a controllable expansion valve‐based transcritical carbon dioxide heat pump systems for simultaneous heating and cooling at 73 and 4°C, respectively, is presented here. Two optimized capillary tubes having diameter of 1.5 and 1.6 mm are compared with an equivalent controllable throttle valve. Heat transfer and fluid flow effects are included in the gas cooler and evaporator model and capillary tube employs the homogeneous flow model to simulate two‐phase flow. Subcritical and supercritical thermodynamic and transport properties of CO2 are calculated employing a precision in‐house property code. Optimization of effective distribution of total heat exchanger area ratio between gas cooler and evaporator is investigated. The exergetic efficiency is better in case of the capillary tube than that of a controllable throttle valve‐based system. Capillary tube‐based system is shown to be quite flexible regarding changes in ambient temperature, almost behaving to offer an optimal pressure control just like the controllable expansion valve yielding both, maximum system COP and maximum exergetic efficiency. Relatively at a smaller diameter, the capillary tube exhibits better exergetic efficiency. Capillary tube length is the critical parameter that influences system optimum conditions. The exergy flow diagram exhibits that compressor, gas cooler and capillary tube contribute a larger share, in that order, to system irreversibility. It is fairly established in this study that a capillary tube can be a good engineering option for small capacity systems in lieu of an expansion valve, which has been thought of as the only possible solution to attain the pressure optimization, an important feature of all transcritical CO2 systems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
This paper provides the results of simulations using an adiabatic capillary tube model which is developed to study the flow characteristics in adiabatic capillary tubes used as a refrigerant control device in refrigerating systems. The developed model can be considered as an effective tool of capillary tubes' design and optimization for systems using newer alternative refrigerants. The model is validated by comparing with the experimental data of Li et al. and Mikol for R12 and Melo et al. for R134a. In particular, it has been possible to compare various pairs of refrigerants. It is found that the conventional refrigerants consistently give longer capillary lengths than the alternative refrigerants. For all pairs, the conventional refrigerant consistently give lower pressure drops for both single-phase and two-phase flow which resulted in longer tube lengths. In addition, an example of capillary tube selection chart developed from the present numerical simulation is shown. The chart can be practically used to select the capillary tube size from the flow rate and flow condition or to determine mass flow rate directly from a given capillary tube size and flow condition. The results of this study are of technological importance for the efficient design when systems are assigned to utilize various alternative refrigerants.  相似文献   

7.
Experiments of flow boiling heat transfer were conducted in four horizontal flattened smooth copper tubes of two different heights of 2 and 3 mm. The equivalent diameters of the flattened tubes are 8.6, 7.17, 6.25, and 5.3 mm. The working fluids were R22 and R410A. The test conditions were: mass velocities from 150 to 500 kg/m2 s, heat fluxes from 6 to 40 kW/m2 and saturation temperature of 5 °C. The experimental heat transfer results are presented and the effects of mass flux, heat flux, and tube diameter on heat transfer are analyzed. Furthermore, the flow pattern based flow boiling heat transfer model of Wojtan et al. [L. Wojtan, T. Ursenbacher, J.R. Thome, Investigation of flow boiling in horizontal tubes: Part I – A new diabatic two-phase flow pattern map, Int. J. Heat Mass Transfer 48 (2005) 2955–2969; L. Wojtan, T. Ursenbacker, J.R. Thome, Investigation of flow boiling in horizontal tubes: Part II – Development of a new heat transfer model for stratified-wavy, dryout and mist flow regimes, Int. J. Heat Mass Transfer 48 (2005) 2970–2985], using the equivalent diameters, were compared to the experimental data. The model predicts 71% of the entire database of R22 and R410A ±30% overall. The model predicts well the flattened tube heat transfer coefficients for R22 while it does not predicts well those for R410A. Based on several physical considerations, a modified flow boiling heat transfer model was proposed for the flattened tubes on the basis of the Wojtan et al. model and it predicts the flattened tube heat transfer database of R22 and R410A by 85.8% within ±30%. The modified model is applied to the reduced pressures up to 0.19.  相似文献   

8.
The results of an experimental study on the heat transfer characteristics of two‐phase flow condensation of some azeotropic refrigerant mixtures, proposed as alternatives to R‐22, on air/refrigerant horizontal enhanced surface tubing are presented. The condensation data indicated that the heat transfer coefficient of the blend R‐408A has the highest heat transfer rate among the blends under investigation. The condensation data also showed that R‐507 and R‐404A have similar heat transfer rates to that of R‐22 when plotted against the refrigerant mass flow rate. It can also be observed that, as the mass flux increases, the heat transfer coefficient increases. Correlations were proposed to predict the heat transfer characteristics such as average heat transfer coefficients as well as pressure drops of alternatives to R‐22 such as R‐507, R‐404A, R‐407C and R‐408A, as well as R‐410A in two‐phase flow condensation inside enhanced surface tubing. In addition, proposed correlations were found to fairly predict the two‐phase flow heat transfer condensation data. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
Two-phase frictional pressure drop characteristics of R410A/oil mixture flow boiling in horizontal small smooth tubes with outside diameters of 5.0 mm and 3.0 mm were investigated experimentally. Experimental conditions cover nominal oil concentrations from 0% to 5%. The test results show that the frictional pressure drop of R410A initially increases with the increase of vapor quality and then decreases, presenting a local maximum in the vapor quality range between 0.6 and 0.8; the presence of oil increases two-phase frictional pressure drop about 0–120% and 0–90% in present test conditions for 5.0 mm O.D. smooth tube and 3.0 mm O.D. smooth tube, respectively, and the increase is evident at high vapor qualities. The vapor-phase multiplier of R410A/oil mixture based on the mixture properties decreases with the decrease of tube diameter. A new vapor-phase multiplier correlation to predict the local frictional pressure drop of R410A/oil mixture flow boiling inside smooth tubes is developed based on local properties of refrigerant–oil mixture, and the deviations of the new correlation are within ±25% from the experimental data.  相似文献   

10.
This paper presents a numerical study of the flow characteristics of refrigerants flowing through adiabatic helically coiled capillary tubes. The theoretical model is based on conservation of mass, energy and momentum of the fluids in the capillary tube. The two-phase flow model developed was based on the homogeneous flow assumption. The viscosity model was also based on recommendations from the literature. The developed model can be considered as an effective tool for designing and optimizing capillary tubes working with newer alternative refrigerants. The model is validated by comparison with the experimental data of Kim et al. (2002) for R-22, R-407C and R-410A, and Zhou and Zhang (2006) for R-22. The results obtained from the present model show reasonable agreement with the experimental data. The proposed model can be used to design helical capillary tubes working with various refrigerants.  相似文献   

11.
《Applied Thermal Engineering》2003,23(15):1871-1880
In this paper the adiabatic flow in the capillary tube is analyzed and modeled for R407C, which is a non-azeotropic mixed refrigerant and one of the alternatives to R22. The equations of energy, continuity and pressure drop through a capillary tube are presented. A mathematical model of the sub-cooled flow region and the two-phase flow region is developed. The results of the calculation show that this numerical model is capable of providing an effective means to analyze components’ performance in optimizing and controlling a R407C air-conditioning system.  相似文献   

12.
In this paper, a homogeneous model including the metastable liquid and metastable two‐phase region is presented to assess the effects of various friction factor equations and two‐phase viscosity correlations on simulating the behaviour of capillary tubes. Both straight and coiled capillary tubes are considered and R‐22 is used for comparison. The predicted pressure distribution, tube lengths or mass flow rates are compared with experimental data reported in literature. It is confirmed that the predicting accuracy with homogeneous model can be improved by employing the suitable correlations of friction factor and two‐phase viscosity. For straight capillaries, the Churchill and Colebrook friction factor correlations give almost the same simulating results. However, the numerical results show that the optimum combination of correlations of friction factor and two‐phase viscosity may be different when compared with different experimental data. For coiled capillaries, the Mori and Nakayama friction factor correlation agrees well with Ito's formula for single liquid‐phase flow. Together with Giri's friction factor equation for two‐phase flow, Cicchitti viscosity model best predicts the measured mass flow rate with an average error of 4.88%. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
An unfavorable effect of gas impurities on the throttling process inside a small-diameter tube, i.e. a capillary tube, has been studied in detail. A special testing capillary tube equipped with precise temperature and pressure sensors has been used for an experimental investigation of the capillary flow of a saturated fluorocarbon refrigerant, R218, contaminated by dissolved nitrogen. The gas impurities significantly affected the throttling process, since the two-phase flow started notably earlier than in the case of pure refrigerant flow. Moreover, the gas contamination resulted in a decreased mass flow rate of refrigerant delivered through the capillary tube. A comprehensive numerical model has been developed to simulate the capillary flow of gas-contaminated refrigerant. The model takes into account two coincident thermodynamic events: the throttling process of the refrigerant (solvent) and the gradual release of the dissolved gas impurities (solute) from the refrigerant liquid phase. The gas release is in principle described by using the temperature correlation of the Henry’s law constant. The model considers adiabatic, thermodynamically equilibrated capillary flow with homogeneous two-phase flow. The numerical simulation is in good agreement with our experimental data measured for R218 contaminated by nitrogen.  相似文献   

14.
The heat transfer behavior of phase change material fluid (PCM) under laminar flow conditions in circular tubes and internally longitudinal finned tubes was studied. An effective specific heat technique was used to model the phase change process. Heat transfer results for a smooth circular tube with PCM fluid were obtained under hydrodynamically and thermally fully developed conditions. Results for the finned tube were obtained using the H2 and T boundary conditions. It was determined that the Nusselt number was strongly dependent on the Stefan number, fin thermal conductivity value, and height of the fins.  相似文献   

15.
This work presents a numerical model to simulate steady state refrigerant flow along capillary tube-suction line heat exchangers, commonly used in small refrigeration systems. The flow along the straight and horizontal capillary tube is divided into two regions: a single-phase and a two-phase flow region. The flow is taken as one-dimensional and the metastable flow phenomenon is neglected. The two-fluid model is employed for the two-phase flow region, considering the hydrodynamic and the thermodynamic non-equilibrium between the liquid and vapor phases. Comparisons are made with experimental measurements of the mass flow rate and temperature distribution along capillary tube-suction line heat exchangers working with refrigerant R134a in different operating conditions. The results indicate that the present model provides a good estimation of the refrigerant mass flow rate. Moreover, comparisons with a homogeneous model are also made. Some computational results referring to the quality, void fraction and velocities of each phase are also presented and discussed.  相似文献   

16.
Experiments of diabatic two-phase pressure drops in flow boiling were conducted in four horizontal flattened smooth copper tubes with two different heights of 2 and 3 mm. The equivalent diameters of the flat tubes are 8.6, 7.17, 6.25, and 5.3 mm. The working fluids are R22 and R410A, respectively. The test conditions are: mass velocities from 150 to 500 kg/m2 s, heat fluxes from 6 to 40 kW/m2 and saturation temperature of 5 °C (reduced pressures pr are 0.12 for R22 and 0.19 for R410A). The experimental results of two-phase pressure drops are presented and analyzed. Furthermore, the predicted two-phase frictional pressure drops by the flow pattern based two-phase pressure drop model of Moreno Quibén and Thome [J. Moreno Quibén, J.R. Thome, Flow pattern based two-phase frictional pressure drop model for horizontal tubes, Part I: Diabatic and adiabatic experimental study, Int. J. Heat Fluid Flow 28 (2007) 1049–1059; J. Moreno Quibén, J.R. Thome, Flow pattern based two-phase frictional pressure drop model for horizontal tubes, Part II: New phenomenological model, Int. J. Heat Fluid Flow 28 (2007) 1060–1072] using the equivalent diameters were compared to the experimental data. The model, however, underpredicts the flattened tube two-phase frictional pressure drop data. Therefore, correction to the annular flow friction factor was proposed for the flattened tubes and now the method predicts 83.7% of the flattened tube pressure drop data within ±30%. The model is applicable to the flattened tubes in the test condition range in the present study. Extension of the model to other conditions should be verified with experimental data.  相似文献   

17.
A capacitive void fraction sensor was developed to study the objectivity in flow pattern mapping of horizontal refrigerant two-phase flow in macroscale tubes. Sensor signals were gathered with R410A and R134a in a smooth tube with an inner diameter of 8 mm at a saturation temperature of 15 °C in the mass velocity range of 200–500 kg/m2 s and vapour quality range from 0 to 1 in steps of 0.025. A visual classification based on high speed camera images is made for comparison reasons. A statistical analysis of the sensor signals shows that the average, the variance and a high frequency contribution parameter are suitable for flow regime classification into slug flow, intermittent flow and annular flow by using the fuzzy c-means clustering algorithm. This soft-clustering algorithm predicts the slug/intermittent flow transition very well compared to our visual observations. The intermittent/annular flow transition is found at slightly higher vapour qualities for R410A compared to the prediction of Barbieri et al. (2008) [20]. An excellent agreement was obtained with R134a. This intermittent/annular flow transition is very gradual. A probability approach can therefore better describe such a transition. The membership grades of the cluster algorithm can be interpreted as flow regime probabilities. Probabilistic flow pattern maps are presented for R410A and R134a in an 8 mm ID tube.  相似文献   

18.
In this paper, an experimental study on the heat transfer characteristics of two‐phase flow boiling of alternative zeotropic refrigerant mixtures to R‐22, on air/refrigerant horizontal enhanced surface tubing is presented. The new alternatives considered in this study are: R‐507, R‐404A, R‐408A, R‐407C, and R‐410A. The experimental data showed that R‐22 has the highest heat transfer rate compared to the other blends in the range investigated. Furthermore, it was also quite evident from these data that R‐410A has the highest pressure among the blends under investigation for Reynolds number greater than 3.5×104. However, for Reynolds number less than 3.6×104, it appears from the data that R‐22 has the highest pressure drop compared to other refrigerants under investigation. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents a numerical investigation of the flow characteristics of helical capillary tubes compared with straight capillary tubes. The homogenous two-phase flow model developed is based on the conservation of mass, energy, and momentum of the fluids in the capillary tube. This model is validated by comparing it with the experimental data of both straight and helical capillary tubes. Comparisons of the predicted results between the straight and helical capillary tubes are presented, together with the experimental results for straight capillary tubes obtained by previous researchers. The results show that the refrigerant flowing through the straight capillary tube provides a slightly lower pressure drop than that in the helical capillary tube, which resulted in a total tube length that was longer by about 20%. In addition, for the same tube length, the mass flow rate in the helical capillary tube with a coil diameter of 40 mm is 9% less than that in the straight tube. Finally, the results obtained from the present model show reasonable agreement with the experimental data of helical capillary tubes and can also be applied to predict the flow characteristics of straight capillary tubes by changing to straight tube friction factors, for which Churchill's equation was used in the present study.  相似文献   

20.
《Applied Thermal Engineering》2001,21(10):1035-1048
Literature shows that the homogeneous flow assumption has been commonly used in most of the adiabatic capillary tube modeling studies due to its simplicity. The slip effect between the two phases was often not considered in this small diameter capillary tube. This paper attempts to exploit the possibility of applying the equilibrium two-phase drift flux model to simulate the flow of refrigerant in the capillary tube expansion devices. Attempts have been made to compare predictions with experimental results. The details flow characteristics of R134a in a capillary tube, such as distribution of pressure, void fraction, dryness fraction, phase’s velocities and their drift velocity relative to the center of the mass of the mixture are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号