首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The highly enantioselective organo‐co‐catalytic aza‐Morita–Baylis–Hillman (MBH)‐type reaction between N‐carbamate‐protected imines and α,β‐unsaturated aldehydes has been developed. The organic co‐catalytic system of proline and 1,4‐diazabicyclo[2.2.2]octane (DABCO) enables the asymmetric synthesis of the corresponding N‐Boc‐ and N‐Cbz‐protected β‐amino‐α‐alkylidene‐aldehydes in good to high yields and up to 99% ee. In the case of aza‐MBH‐type addition of enals to phenylprop‐2‐ene‐1‐imines, the co‐catalytic reaction exhibits excellent 1,2‐selectivity. The organo‐co‐catalytic aza‐MBH‐type reaction can also be performed by the direct highly enantioselective addition of α,β‐unsaturated aldehydes to bench‐stable N‐carbamate‐protected α‐amidosulfones to give the corresponding β‐amino‐α‐alkylidene‐aldehydes with up to 99% ee. The organo‐co‐catalytic aza‐MBH‐type reaction is also an expeditious entry to nearly enantiomerically pure β‐amino‐α‐alkylidene‐amino acids and β‐amino‐α‐alkylidene‐lactams (99% ee). The mechanism and stereochemistry of the chiral amine and DABCO co‐catalyzed aza‐MBH‐type reaction are also discussed.  相似文献   

2.
A series of chiral β‐substituted alkanephosphonates was synthesized in high enantioselectivities via the first rhodium‐catalyzed asymmetric hydrogenation of the corresponding β‐substituted‐α,β‐unsaturated phosphonates using a ferrocene‐derived monophosphoramidite ligand, with which up to 99.5% ee have been achieved for the hydrogenation of (E)‐substrates and 98.0% ee for (Z)‐substrates.  相似文献   

3.
We have previously shown that the β‐aminopeptidases BapA from Sphingosinicella xenopeptidilytica and DmpA from Ochrobactrum anthropi can catalyze reactions with non‐natural β3‐peptides and β3‐amino acid amides. Here we report that these exceptional enzymes are also able to utilize synthetic dipeptides with N‐terminal β2‐amino acid residues as substrates under aqueous conditions. The suitability of a β2‐peptide as a substrate for BapA or DmpA was strongly dependent on the size of the Cα substituent of the N‐terminal β2‐amino acid. BapA was shown to convert a diastereomeric mixture of the β2‐peptide H‐β2hPhe‐β2hAla‐OH, but did not act on diastereomerically pure β23‐dipeptides containing an N‐terminal β2‐homoalanine. In contrast, DmpA was only active with the latter dipeptides as substrates. BapA‐catalyzed transformation of the diastereomeric mixture of H‐β2hPhe‐β2hAla‐OH proceeded along two highly S‐enantioselective reaction routes, one leading to substrate hydrolysis and the other to the synthesis of coupling products. The synthetic route predominated even at neutral pH. A rise in pH of three log units shifted the synthesis‐to‐hydrolysis ratio (vS/vH) further towards peptide formation. Because the equilibrium of the reaction lies on the side of hydrolysis, prolonged incubation resulted in the cleavage of all peptides that carried an N‐terminal β‐amino acid of S configuration. After completion of the enzymatic reaction, only the S enantiomer of β2‐homophenylalanine was detected (ee>99 % for H‐(S)‐β2‐hPhe‐OH, E>500); this confirmed the high enantioselectivity of the reaction. Our findings suggest interesting new applications of the enzymes BapA and DmpA for the production of enantiopure β2‐amino acids and the enantioselective coupling of N‐terminal β2‐amino acids to peptides.  相似文献   

4.
N‐carboxyethylation of chitosan by β‐halopropionic acids in the presence of various proton and halogen ion acceptors was investigated. It has been observed that carboxyethylation of chitosan in aqueous medium is accompanied by the by‐processes of hydrolysis and dehydrohalogenation of the β‐halopropionic acids yielding β‐hydroxypropionic acid, bis(2‐carboxyethyl) ether, and acrylic acid. Degree of carboxyethyl substitution (DS) of chitosan and the relative rates of the by‐processes varied significantly depending on the conditions used and nature of the proton or halogen ion acceptor. At carboxyethylation of chitosan with the alkaline β‐bromopropionates, the DS increased in the order Cs+ < Rb+ < K+ ~ Na+ < Li+. For alkaline earth salts BrCH2CH2COOM0.5 (M = Be2+, Mg2+, Ca2+, Sr2+, Ba2+), the highest DS was obtained with strontium and barium salts, which could be subsequently removed from the reaction mixture by precipitation as sulfates. Among the organic bases applied (tetrabutylammonium hydroxide, triethylamine, trimethylamine, pyridine, 4‐N,N‐dimethylaminopyridine, 2,6‐lutidine, and 1,5‐diazabicyclo[4.3.0] non‐5‐ene), the highest DS was obtained using a moderately strong base triethylamine. For the halogen acceptors (Pb2+, Ag+, Tl+), the stoichiometrically highest DS was achieved in a system comprising iodopropionic acid plus Tl+ and a comparable conversion rate was obtained using also a combination of chloropropionic acid and Ag+. A novel alternative preparative approach—gel‐state synthesis—was suggested that provides for the highest DS at the optimum reaction conditions. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
Phase behavior of octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine (HMX) is investigated by X‐ray powder diffraction (XRD). The XRD patterns at elevated temperature show that there is a co‐existing temperature range of β‐ and δ‐phase during the phase transition process. Additionally, mechanical forces can catalyze the conversion from δ‐ back to β‐phase. Based on the diffraction patterns of β‐ and δ‐phase at different temperatures, we calculate the coefficients of thermal expansion by Rietveld refinement. For β‐HMX, the linear coefficients of thermal expansion of a‐axis and b‐axis are about 1.37×10−5 and 1.25×10−4 °C−1. A slight decrease in c‐axis with temperature is also observed, and the value is about −0.63×10−5 °C−1. The volume coefficient of thermal expansion is about 1.60×10−4 °C−1, with a 2.2% change from 30 to 170 °C. For δ‐HMX, the linear coefficients of thermal expansion of a‐axis and c‐axis are found to be 5.39×10−5 and 2.38×10−5 °C−1, respectively. The volume coefficient of thermal expansion is about 1.33×10−4 °C−1, with a 2.6% change from 30 to 230 °C. The results indicate that β‐HMX has a similar volume coefficient of thermal expansion compared with δ‐HMX, and there is about 10.5% expansion from β‐HMX at 30 °C to δ‐HMX at 230 °C, of which about 7% may be attributed to the reconstructive transition.  相似文献   

6.
The activation of C Cl bond of (Z)‐α‐chloroalkylidene‐β‐lactones and (E)‐α‐chloroalkylidene‐β‐lactams via the Suzuki cross‐coupling reaction is reported in this paper. Alkyl, heteroaromatic, substituted phenyl‐ and alkenylboronic acids can be coupled with a wide variety of α‐chloroalkylidene‐β‐lactones and β‐lactams in excellent yields within a short period of time. The cross‐coupling reaction of optically active substrates leads to the optically active compounds without racemization of the corresponding chiral center.  相似文献   

7.
The feasibility of the radical copolymerizations of β‐pinene with three N‐substituted maleimides, i.e. N‐phenylmaleimide (PhMI), N‐methylmaleimide (MeMI), and N‐ethylmaleimide (EtMI), was clarified for the first time. The copolymerization rates decreased in the order PhMI > MeMI > EtMI. A marked penultimate effect on the activity of the N‐substituted maleimide‐terminated radicals was found in these copolymerizations. The penultimate monomer reactivity ratios evaluated by the nonlinear method were r1 = 0.10, r1 = 8.30, r2 = r2 = 0 for PhMI–β‐pinene, r1 = 0.20, r1 = 7.09, r2 = r2 = 0 for MeMI–β‐pinene, and r1 = 0.16, r1 = 6.50, r2 = r2 = 0 for EtMI–β‐pinene. Furthermore, the possible controlled copolymerizations of β‐pinene and N‐substituted maleimides were then attempted via the reversible addition‐fragmentation chain transfer (RAFT) technique. In the presence of RAFT agent 1‐phenylethyl phenyldithioacetate, the copolymerization of β‐pinene with MeMI or EtMI was retarded severely. However, much smaller retardation was observed in the RAFT copolymerization of β‐pinene with PhMI, and, more importantly, the copolymerization exhibited typical features of a controlled system. The solvent effect on the RAFT copolymerization of β‐pinene and PhMI was also investigated using matrix‐assisted laser desorption ionization time‐of‐fight mass spectrometry (MALDI‐TOF‐MS) analysis. The results clearly indicated that copolymerization in tetrahydrofuran suffered from competitive transfer and termination side‐reactions arising from the solvent in spite of the presence of the RAFT agent. Copyright © 2007 Society of Chemical Industry  相似文献   

8.
The phenylalanine aminomutase (PAM) from Taxus chinensis catalyses the conversion of α‐phenylalanine to β‐phenylalanine, an important step in the biosynthesis of the N‐benzoyl phenylisoserinoyl side‐chain of the anticancer drug taxol. Mechanistic studies on PAM have suggested that (E)‐cinnamic acid is an intermediate in the mutase reaction and that it can be released from the enzyme's active site. Here we describe a novel synthetic strategy that is based on the finding that ring‐substituted (E)‐cinnamic acids can serve as a substrate in PAM‐catalysed ammonia addition reactions for the biocatalytic production of several important β‐amino acids. The enzyme has a broad substrate range and a high enantioselectivity with cinnamic acid derivatives; this allows the synthesis of several non‐natural aromatic α‐ and β‐amino acids in excellent enantiomeric excess (ee >99 %). The internal 5‐methylene‐3,5‐dihydroimidazol‐4‐one (MIO) cofactor is essential for the PAM‐catalysed amination reactions. The regioselectivity of amination reactions was influenced by the nature of the ring substituent.  相似文献   

9.
Reaction of the complexes (SM,RC)‐[(η5‐C5Me5)M{(R)‐Prophos}(H2O)](SbF6)2 (M=Rh, Ir) with α,β‐unsaturated aldehydes diastereoselectively gave complexes (SM,RC)‐[(η5‐C5Me5)M{(R)‐Prophos}(enal)](SbF6)2 which have been fully characterized, including an X‐ray molecular structure determination of the complex (SRh,RC)‐[(η5‐C5Me5)Rh{(R)‐Prophos}(trans‐2‐methyl‐2‐pentenal)](SbF6)2. These enal complexes efficiently catalyze the enantioselective 1,3‐dipolar cycloaddition of the nitrones N‐benzylideneaniline N‐oxide and 3,4‐dihydroisoquinoline N‐oxide to the corresponding enals. Reactions occur with excellent regioselectivity, perfect endo selectivity and with enantiomeric excesses up to 94 %. The absolute configuration of the adduct 5‐methyl‐2,3‐diphenylisoxazolidine‐4‐carboxaldehyde was determined through its (R)‐(−)‐α‐methylbenzylamine derivative.  相似文献   

10.
On the premise that shear in the slit die of an extruder was minimized as far as possible, β‐nucleated isotactic polypropylene (iPP) was extruded. Simultaneously, once the extrudate (in the melt state) left the die exit, it was stretched at various stretching rates (SRs). For iPP with a low content of β‐nucleating agent (β‐NA), the crystallinity of β‐phase (Xβ) initially increases with increasing SR, and then decreases slightly with further increase in SR. However, for iPP containing a higher content of β‐NA, with increasing SR, Xβ decreases monotonically, indicating a negative effect of SR on β‐phase formation. Small‐angle X‐ray scattering and polarized optical microscopy experiments reveal that, when SR is less than 30 cm min?1, the increasing amount of row nuclei induced by increasing SR is mainly responsible for the increase of Xβ. In contrast, when SR exceeds 30 cm min?1, the overgrowth of shish structures unexpectedly restrains the development of β‐phase, and spatial confinement is considered as a better explanation for the suppression of β‐phase. Copyright © 2011 Society of Chemical Industry  相似文献   

11.
Racemic cis‐10‐azatetracyclo[7.2.0.12,6.14,8]tridecan‐11‐one was prepared from homoadamant‐4‐ene by chlorosulfonyl isocyanate addition. The transformation of the β‐lactam to the corresponding β‐amino ester followed by Candida antarctica lipase A‐catalyzed enantioselective (E>>200) N‐acylation with 2,2,2‐trifluoroethyl butanoate afforded methyl (1R,4R,5S,8S)‐5‐aminotricyclo[4.3.1.13,8]undecane‐4‐carboxylate and the (1S,4S,5R,8R)‐butanamide with>99% ee at 50% conversion. Alternatively, transformation of the β‐lactam to the corresponding N‐hydroxymethyl‐β‐lactam and the following Pseudomonas cepacia (currently Burkholderia cepacia) lipase‐catalyzed enantioseletive O‐acylation provided the (1S,4S,6R,9R)‐alcohol (ee=87%) and the corresponding (1R,4R,6S,9S)‐butanoate (ee>99%). In the latter method, competition for the enzyme between the (1R,4R,6S,9S)‐butanoate, 2,2,2‐trifluoroethyl butanoate and the hydrolysis product, butanoic acid, tended to stop the reaction at about 45% conversion and finally gave racemization in the (1S,4S,6R,9R)‐alcohol with time.  相似文献   

12.
The highly catalytic asymmetric α‐hydroxylation of 1‐tetralone‐derived β‐keto esters and β‐keto amides using tert‐butyl hydroperoxide (TBHP) as the oxidant was realized by a chiral N,N′‐dioxide‐magnesium ditriflate [Mg(OTf)2] complex. A series of corresponding chiral α‐hydroxy dicarbonyl compounds was obtained in excellent yields (up to 99%) with excellent enantioselectivities (up to 98% ee). The products were easily transformed into useful building blocks and the precursor of daunomycin was achieved in an asymmetric catalytic way for the first time.  相似文献   

13.
An efficient and divergent one‐pot synthesis of substituted 2H‐pyrans, 4H‐pyrans and pyridin‐2(1H)‐ones from β‐oxo amides based on the selection of the reaction conditions is reported. Mediated by N,N,N′,N′‐tetramethylchloroformamidinium chloride, β‐oxo amides underwent intermolecular cyclizations in the presence of triethylamine at room temperature to give substituted 2H‐pyrans in high yields, which could be converted into substituted 4H‐pyrans in the presence of sodium hydroxide in ethanol at room temperature, or into substituted pyridin‐2(1 H)‐ones under reflux.  相似文献   

14.
Zinc adipate (Adi‐Zn) was observed to be a highly active and selective β‐nucleating agent for isotactic polypropylene (iPP). The effects of Adi‐Zn on the mechanical properties and the β‐crystals content of nucleated iPP were investigated. The impact strength of iPP nucleated with 0.2 wt % Adi‐Zn was 1.8 times higher than that of neat iPP. In addition, wide‐angle X‐ray diffraction analysis indicated that the content of β‐crystals in nucleated iPP (kβ value) reached 0.973 with 0.1 wt % Adi‐Zn, indicating that Adi‐Zn is a highly active and selective β‐nucleating agent for iPP. Furthermore, fast scanning chip calorimetry (FSC) studies using cooling rates from 60 to 13,800 °C min?1 revealed that the formation of β‐crystals significantly depended on the cooling rates. At cooling rates below 3000 °C min?1, only β‐crystals existed. However, at cooling rates above 6000 °C min?1, β‐crystals failed to form. Moreover, a lower critical crystallization temperature that corresponded to the generation of β‐crystals was investigated using cooling‐induced crystallization, and the results are in good agreement with those of a previous study. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43767.  相似文献   

15.
Propylene‐based propylene–ethylene random copolymer (PPR) has been widely used in the production of hot‐water pipes. To further improve its toughness and thermal resistance, β‐nucleating agents (β‐NAs) are frequently incorporated. In this study, PPR containing 5.6 mol % ethylene units was modified by two kinds of β‐NAs, that is, calcium pimelate and N,N′‐dicyclohexylterephthalamide. The notched Izod impact strength of PPR increased with the addition of the β‐NAs. Drastically different toughening effects were found between the two β‐NAs. The structure of PPR with and without a β‐NA was investigated by calorimetry, X‐ray diffraction, and thermomechanical analysis. The results indicated that the relative fraction of β crystals (kβ) in the injection‐molded specimens was determined by the type and content of β‐NA. The relationship between kβ and the impact toughness was summarized. A critical value for kβ (0.68) was identified for the brittle–ductile transition of PPR. PPR with β‐NA having a kβ greater than 0.68 displayed a higher impact strength than the other mixtures. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42930.  相似文献   

16.
Lipase B from Candida antarctica (CAL‐B) catalyzes the slow, but highly enantioselective (E>200), ring‐opening alcoholysis of two bicyclic and two 4‐aryl‐substituted β‐lactams. Surprisingly, the rate of the reaction varies with the nature of the alcohols and was fastest with either enantiomer of 2‐octanol. A 0.5‐g scale reaction with 2‐octanol as the nucleophile in diisopropyl ether at 60 °C yielded the unreacted β‐lactam in 39–46% yield (maximum yield is 50%) with ≥96% ee. The product β‐amino acid esters reacted further by polymerization (not isolated or characterized) or by hydrolysis due to small amounts of water in the reaction mixture yielding β‐amino acids (7–11% yield, ≥96% ee). The favored enantiomer of all four β‐lactams had similar 3‐D orientation of substituents, as did most previously reported β‐lactams and β‐lactones in similar ring‐opening reactions. Computer modeling of the ring opening of 4‐phenylazetidin‐2‐one suggests that the reaction proceeds via an unusual substrate‐assisted transition state, where the substrate alcohol bridges between the catalytic histidine and the nitrogen of the β‐lactam. Computer modeling also suggested that the molecular basis for the high enantioselectivity is a severe steric clash between Ile189 in CAL‐B and the phenyl substituent on the slow‐reacting enantiomer of the β‐lactam.  相似文献   

17.
Immobilization of β‐galactosidase in poly (acrylonitrile‐co‐methyl methacrylate) poly (AN‐co‐MMA) Nanofibers was studied by electrospinning, and a spacer‐arm i.e., (Polyethyleneimine (PEI)) was covalently attached by the reaction of carbonyl groups of Poly (AN‐co‐MMA) nanofibers. β‐galactosidase was then covalently immobilized through the spacer‐arm of the Poly (AN‐co‐MMA) nanofibers by using glutaraldehyde (GA) as a coupling agent. Nanofibers mode of interaction was proven by FTIR and thermal gravimetric analysis and supported by morphological changes recognized through SEM examination. Factors affecting the modification process such as PEI concentration, reaction time, and reaction temperature have been studied. Its influence on the amount of coupled PEI was consequently correlated to the changes of the catalytic activity and the retained activity of immobilized enzyme, the main parameters judging the success of the immobilization process. Evidences of Poly (AN‐co‐MMA) nanofibers modification were extracted from morphological changes recognized through SEM examination. The maximum activity (Vmax) and michaelis constant (Km) of immobilized enzyme were found to be 8.8 μmole/min mg protein and 236.7 mM, respectively. Stabilities of the immobilized β‐galactosidase were obviously improved. The optimum temperature for β‐galactosidase immobilized on the spacer‐arm attached nanofiber was 5°C higher than that of the free enzyme and was also significantly broader. The immobilized β‐galactosidase had better resistance to temperature inactivation than did the free form. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
The activity of β‐galactosidase immobilized into a poly(2‐hydroxyethyl methacrylate) (pHEMA) membrane increased from 1.5 to 10.8 U/g pHEMA upon increase in enzyme loading. The Km values for the free and the entrapped enzyme were found to be 0.26 and 0.81 mM, respectively. The optimum reaction temperatures for the free and the entrapped β‐galactosidase were both found to be 50°C. Similarly, the optimum reaction pH was 7.5 for both the free and the entrapped enzyme. The immobilized β‐galactosidase was characterized in a continuous system during lactose hydrolysis and the operational inactivation rate constant (kiop) of the entrapped enzyme was found to be 3.1 × 10−5 min−1. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1367–1373, 1999  相似文献   

19.
β‐Polypropylene composites containing calcium carbonate treated by titanate coupling agent (T‐CaCO3) and maleic anhydride grafted PP (PP‐g‐MAH) were prepared by melt compounding. The crystallization, morphology and mechanical properties of the composites were investigated by means of differential scanning calorimetry, wide‐angle X‐ray diffraction, polarized light microscopy, scanning electron microscopy and mechanical tests. It is found that both T‐CaCO3 and NT‐C are able to induce the formation of β‐phase, and NT‐C greatly increases the β content and decreases the spherulitic size of PP. PP‐g‐MAH facilitates the formation of β‐form PP and improves the compatibility between T‐CaCO3 and PP. Izod notched impact strength of β‐PP/T‐CaCO3 composite is higher than that of PP/T‐CaCO3 composite, indicating the synergistic toughening effect of T‐CaCO3 and β‐PP. Incorporation of PP‐g‐MAH into β‐PP/T‐CaCO3 composite further increases the content of β‐crystal PP and improves the impact strength and tensile strength when T‐CaCO3 concentration is below 5 wt%. The nonisothermal crystallization kinetics of β‐PP composites is well described by Jeziorny's and Mo's methods. It is found that NT‐C and T‐CaCO3 accelerate the crystallization rate of PP but the influence of PP‐g‐MAH on crystallization rate of β‐PP composite is marginal. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

20.
To demonstrate the structural specificity of the glycosyl donor for the transglycosylation reaction by using endo‐β‐N‐acetylglucosaminidase from Mucor hiemalis (endo‐M), a series of tetrasaccharide oxazoline derivatives was synthesized. These derivatives correspond to the core structure of an asparagine‐linked glycoprotein glycan with a β‐mannose unit of a non‐natural‐type monosaccharide, including β‐glucose, β‐galactose, and β‐talose in place of the β‐mannose moiety. The transglycosylation activity of wildtype (WT) endo‐M and two mutants, N175Q and N175A, was examined by using these tetrasaccharide donors with p‐nitrophenyl N‐acetylglucosaminide (GlcNAc‐pNp). The essential configuration of the hydroxy group for the transglycosylation reaction was determined. On the basis of these results, the transglycosylation reaction was investigated by using chemically modified donors, and transglycosylated products were successfully obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号