首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(methyl methacrylate)‐poly(ε‐caprolactone) (PMMA/PCL) microparticles were synthesized by suspension polymerization of methyl methacrylate in the presence of PCL. The incorporation of a small amount of a macromonomer, methacryloyl‐terminated PCL (M‐PCL), into the reaction mixture, led to the formation of grafted systems, namely PMMA‐g‐PCL/PCL. The synthesis of the macromonomer and its characterization by nuclear magnetic spectroscopy (1H NMR) is described. The role of M‐PCL as an effective compatibilizing agent in the composite was investigated. PMMA/PCL and PMMA‐g‐PCL/PCL composites were fully characterized by 1H NMR, gel permeation chromatography (GPC) and thermal analysis, including thermogravimetric analysis (TGA), conventional differential scanning calorimetry (DSC), modulated DSC (MDSC) and dynamic mechanical thermal analysis (DMTA). Finally, the morphology of the prepared systems was investigated by scanning electron microscopy (SEM). The addition of compatibilizing agent led the formation of a more homogeneous microcomposite with improved mechanical properties.

SEM picture of PMMA‐g‐PCL/PCL composite surface.  相似文献   


2.
Photo‐induced atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) was achieved in poly(ethylene glycol)‐400 with nanosized α‐Fe2O3 as photoinitiator. Well‐defined poly(methyl methacrylate) (PMMA) was synthesized in conjunction with ethyl 2‐bromoisobutyrate (EBiB) as ATRP initiator and FeCl3·6H2O/Triphenylphosphine (PPh3) as complex catalyst. The photo‐induced polymerization of MMA proceeded in a controlled/living fashion. The polymerization followed first‐order kinetics. The obtained PMMA had moderately controlled number‐average molecular weights in accordance with the theoretical number‐average molecular weights, as well as narrow molecular weight distributions (Mw/Mn). In addition, the polymerization could be well controlled by periodic light‐on–off processes. The resulting PMMA was characterized by 1H nuclear magnetic resonance and gel permeation chromatography. The brominated PMMA was used further as macroinitiator in the chain‐extension with MMA to verify the living nature of photo‐induced ATRP of MMA. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42389.  相似文献   

3.
Well‐defined poly(methyl methacrylate) (PMMA) with an α‐isobutyronitrile group and an ω‐bromine atom as the end groups was synthesized by the microemulsion polymerization of methyl methacrylate (MMA) at 70°C with a 2,2′‐azobisisobutyronitrile/CuBr2/2,2′‐bipyridine system. The conversion of the polymerization reached 81.9%. The viscosity‐average molecular weight of PMMA was high (380,000), and the polydispersity index was 1.58. The polymerization of MMA exhibited some controlled radical polymerization characteristics. The mechanism of controlled polymerization was studied. The presence of hydrogen and bromine atoms as end groups of the obtained PMMA was determined by 1H‐NMR spectroscopy. The shape and size of the final polymer particles were analyzed by scanning probe microscopy, and the diameters of the obtained particles were usually in the range of 60–100 nm. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3670–3676, 2006  相似文献   

4.
Well‐dispersed poly(methyl methacrylate) (PMMA)–bentonite clay composite was synthesized by emulsion polymerization using methyl methacrylate (MMA) monomer and 3% sodium carbonate treated bentonite clay. The composite lost its transparency normally encountered with the neat PMMA. The composite was characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), vicat softening point (VSP), dynamic mechanical thermal analysis (DMTA), and tensile studies. The morphology was investigated by scanning electron microscopy (SEM) and atomic forced microscopy (AFM) as well. The crystallography was studied to estimate the changes in crystallographic planes by X‐ray diffraction (XRD) analysis. The particle size distribution was compared amongst neat bentonite clay, neat PMMA and the composite. The FTIR spectra reveal the fact that no new primary valence bond is formed between the clay and PMMA. The thermal stability of the composite is significantly improved, as indicated by the TGA and VSP studies. A substantial increase in glass transition temperature (Tg) approximately, 10°C was recorded from the DMTA as both the storage modulus and tan δ values underwent inflexion at higher temperatures in case of the composite compared with the pristine PMMA. The XRD pattern indicates increase in basal “d” spacing for the composite. The morphology from both the SEM and AFM is quite supportive to well‐dispersed exfoliation. The incorporation of nanosized activated clay particles in PMMA during its in situ polymerization from MMA led to the formation of nanocomposites. POLYM. COMPOS., 2013. © 2012 Society of Plastics Engineers  相似文献   

5.
In this study, a series of organic–inorganic hybrid sol–gel materials consisting of a poly(methyl methacrylate) (PMMA) matrix and dispersed silica (SiO2) particles were successfully prepared through an organic‐acid‐catalyzed sol–gel route with N‐methyl‐2‐pyrrolidone as the mixing solvent. The as‐synthesized PMMA–SiO2 nanocomposites were subsequently characterized with Fourier transform infrared spectroscopy and transmission electron microscopy. The solid phase of organic camphor sulfonic acid was employed to catalyze the hydrolysis and condensation (i.e., sol–gel reactions) of tetraethyl orthosilicate in the PMMA matrix. The formation of the hybrid membranes was beneficial for the physical properties at low SiO2 loadings, especially for enhanced mechanical strength and gas barrier properties, in comparison with the neat PMMA. The effects of material composition on the thermal stability, thermal conductivity, mechanical strength, molecular permeability, optical clarity, and surface morphology of the as‐prepared hybrid PMMA–SiO2 nanocomposites in the form of membranes were investigated with thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, gas permeability analysis, ultraviolet–visible transmission spectroscopy, and atomic force microscopy, respectively. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
A novel reactive phosphorus–nitrogen‐containing monomer, N‐(2‐(5,5‐dimethyl‐1,3,2‐dioxaphosphinyl‐2‐ylamino)ethyl)‐acrylamide (DPEAA), was synthesize and characterized. Flame retardant poly(methyl methacrylate)/organic‐modified montmorillonite (PMMA‐DPEAA/OMMT) nanocomposites were prepared by in situ polymerization by incorporating methyl methacrylate, DPEAA, and OMMT. The results from X‐ray diffraction and transmission electron microscopy (TEM) showed that exfoliated PMMA‐DPEAA/OMMT nanocomposites were formed. Thermal stability and flammability properties were investigated by thermogravimetric analysis, cone calorimeter, and limiting oxygen index (LOI) tests. The synergistic effect of DPEAA and montmorillonite improved thermal stability and reduced significantly the flammability [including peak heat release rates (PHRR), total heat release, average mass loss rate, etc.]. The PHRR of PMMA‐DPEAA/OMMT was reduced by about 40% compared with pure PMMA. The LOI value of PMMA‐DPEAA/OMMT reached 27.3%. The morphology and composition of residues generated after cone calorimeter tests were investigated by scanning electronic microscopy (SEM), TEM, and energy dispersive X‐ray (EDX). The SEM and TEM images showed that a compact, dense, and uniform intumescent char was formed for PMMA‐DPEAA/OMMT nanocomposites after combustion. The results of EDX confirmed that the carbon content of the char for PMMA‐DPEAA/OMMT nanocomposites increased obviously by the synergistic effect of DPEAA and montmorillonite. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
8.
PMMA–PS–PMMA triblock copolymers were prepared by the combination of an anionic mechanism with charge‐transfer polymerization. Polystyrene with aromatic tertiary amino groups at both ends (PSba) was synthesized first by the reaction of a living polystyrene macrodianion with excess p‐(dimethylamino)benzaldehyde; then, the PSba was constituted into a binary system with benzophenone (BP) to initiate the polymerization of methyl methacrylate (MMA) under UV irradiation. The intermediate and resulting block copolymers were characterized by GPC, IR, and 1H‐NMR. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2072–2076, 1999  相似文献   

9.
In this study, the structural and morphological properties of poly(methyl methacrylate)/poly(acrylonitrile‐g‐(ethylene‐co‐propylene‐co‐diene‐g‐styrene) (PMMA‐AES) blends were investigated with emphasis on the influence of the in situ polymerization conditions of methyl methacrylate. PMMA‐AES blends were obtained by in situ polymerization, varying the solvent (chloroform or toluene) and polymerization conditions: method A—no stirring and air atmosphere; method B—stirring and N2 atmosphere. The blends were characterized by infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and dynamic mechanical analysis (DMA). The results showed that the PMMA‐AES blends are immiscible and present complex morphologies. This morphology shows an elastomeric dispersed phase in a glassy matrix, with inclusion of the matrix in the elastomer domains, suggesting core shell or salami morphology. The occlusion of the glassy phase within the elastomeric domains can be due to the formation of graft copolymer and/or phase inversion during polymerization. However, this morphology is affected by the polymerization conditions (stirring and air or N2 atmosphere) and by the solvent used. The selective extraction of the blends' components and infrared spectroscopy showed that crosslinked and/or grafting reactions occur on the elastomer chains during MMA polymerization. The glass transition of the elastomer phase is influenced by morphology, crosslinking, and grafting degree and, therefore, Tg depends on the polymerization conditions. On the other hand, the behavior of Tg of the glassy phase with blend composition suggests miscibility or partial miscibility for the SAN phase of AES and PMMA. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
Poly(methyl methacrylate) (PMMA)–clay nanocomposite (PCN) materials were synthesized through in situ intercalative polymerization. A cationic surfactant, [2(dimethylamino)ethyl]triphenylphosphonium bromide, was used as an intercalating agent with pristine Na+‐montmorillonite (MMT). The synthesized PCN materials were subsequently investigated by a series of characterization techniques, including wide‐angle powder X‐ray diffraction, Fourier transform IR spectroscopy, transmission electron microscopy, thermogravimetric analysis, and differential scanning calorimetry. Compared to pure PMMA, the PCN materials exhibit higher thermal degradation temperatures and glass‐transition temperatures. The dielectric properties of PCN blending with a commercial PMMA material in film form with clay loading from 0.5 to 5.0 wt % were measured under frequencies of 100 Hz–1 MHz at 35–100°C. Significantly depressed dielectric constants and losses were observed for these PCN‐blending materials. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2175–2181, 2005  相似文献   

11.
Nanocomposites of poly(methyl methacrylate) (PMMA) filled with 3 wt% of modified natural Algerian clay (AC; montmorillonite type) were prepared by either in situ polymerization of methyl methacrylate initiated by 2,2′‐azobisisobutyronitrile or a melt‐mixing process with preformed PMMA via twin‐screw extrusion. The organo‐modification of the AC montmorillonite was achieved by ion exchange of Na+ with octadecyldimethylhydroxyethylammonium bromide. Up to now, this AC montmorillonite has found applications only in the petroleum industry as a rheological additive for drilling muds and in water purification processes; its use as reinforcement in polymer matrices has not been reported yet. The modified clay was characterized using X‐ray diffraction (XRD), which showed an important shift of the interlayer spacing after organo‐modification. The degree of dispersion of the clay in the polymer matrix and the resulting morphology of nanocomposites were evaluated using XRD and transmission electron microscopy. The resulting intercalated PMMA nanocomposites were analysed using thermogravimetric analysis and differential scanning calorimetry. The glass transition temperature of the nanocomposites was not significantly influenced by the presence of the modified clay while the thermal stability was considerably improved compared to unfilled PMMA. This Algerian natural montmorillonite can serve as reinforcing nanofiller for polymer matrices and is of real interest for the fabrication of nanocomposite materials with improved properties. Copyright © 2009 Society of Chemical Industry  相似文献   

12.
The compatibilizing efficiency of three different compatibilizers in thermoplastic polyurethane/styrene‐co‐acrylonitrile (TPU/SAN) blends was investigated after their incorporation via melt‐mixing. The compatibilizers studied were poly‐ε‐caprolactone (PCL), a mixture of polystyrene‐block‐polycaprolactone (PS‐b‐PCL) and polystyrene‐block‐poly(methyl methacrylate) (PS‐b‐PMMA), and a mixture of polyisoprene‐block‐polycaprolactone (PI‐b‐PCL) and polybutadiene‐block‐poly(methyl methacrylate) (PB‐b‐PMMA). All compatibilizers were synthesized by living anionic polymerization. Investigations of thermal and thermo‐mechanical properties performed by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DTMA), respectively, were systematically classified into two groups, i.e. blends of TPU or SAN with 20 wt% of different compatibilizers (so‐called limit conditions) and TPU/SAN 25/75 blends with 5 wt% of different compatibilizers. In order to determine the compatibilizer's location, morphology of TPU/SAN 25/75 blends was studied with transmission electron microscopy (TEM). Different compatibilization activity was found for different systems. Blends compatibilized with PCL showed superior properties over the other blends. Polym. Eng. Sci. 44:838–852, 2004. © 2004 Society of Plastics Engineers.  相似文献   

13.
The chemoenzymatic synthesis of a novel diblock copolymer consisting of a hydrocarbon block of polycaprolactone (PCL) and an epoxy‐based block of poly(glycidyl methacrylate) (PGMA) was achieved by the combination of enzymatic ring‐opening polymerization (eROP) and atom transfer radical polymerization (ATRP). A trichloromethyl‐terminated PCL macrointiator was obtained via Novozyme 435‐catalyzed eROP of ε‐caprolactone from a bifunctional initiator, 2,2,2‐trichloroethanol, under anhydrous conditions. PCL‐b‐PGMA diblock copolymers were synthesized in a subsequent ATRP of glycidyl methacrylate. The kinetics analysis of ATRP indicated a ‘living’/controlled radical polymerization. The macromolecular structure and thermal properties of the PCL macroinitiator and of the diblock copolymer were characterized using NMR spectroscopy, gel permeation chromatography and differential scanning calorimetry. The well‐defined PCL‐b‐PGMA amphiphilic diblock copolymer self‐assembled in aqueous solution into nanoscale micelles. The size and shape of the resulting micelles were investigated using dynamic light scattering, transmission electron microscopy and tapping‐mode atomic force microscopy. Copyright © 2007 Society of Chemical Industry  相似文献   

14.
Attempts to introduce the azo chromophore into poly(methyl methacrylate) (PMMA) molecular chains were made in search for a new approach to obtain functionalized‐PMMA (f‐PMMA) with high glass transition temperature and an adequate azo content. A novel functionalized monomer, 4,4′‐diacryloyloxyazobenzene (DAOAB), was synthesized and used as grafting agent in the polymerization of methyl methacrylate. 1H‐NMR spectrum, FTIR spectrum, elemental analysis, and MDSC measurement confirmed that the proposed structure of DAOAB was synthesized successfully. Furthermore, the thermal properties and photochromic behavior of f‐PMMA samples were also analyzed by DSC, TGA, and UV–visible spectroscopy. The results have shown that f‐PMMA exhibited a better photochromic behavior and considerably improved thermal properties than pure PMMA. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1061–1068, 2002  相似文献   

15.
Combination of cationic, redox free radical, and thermal free radical polymerizations was performed to obtain linear and star polytetramethylene oxide (poly‐THF)‐polymethyl methacrylate (PMMA)/polystyrene (PSt) multiblock copolymers. Cationic polymerization of THF was initiated by the mixture of AgSbF6 and bis(4,4′ bromo‐methyl benzoyl) peroxide (BBP) or bis (3,5,3′,5′ dibromomethyl benzoyl) peroxide (BDBP) at 20°C to obtain linear and star poly‐THF initiators with Mw varying from 7,500 to 59,000 Da. Poly‐THF samples with hydroxyl ends were used in the methyl methacrylate (MMA) polymerization in the presence of Ce(IV) salt at 40°C to obtain poly(THF‐b‐MMA) block copolymers containing the peroxide group in the middle. Poly(MMA‐b‐THF) linear and star block copolymers having the peroxide group in the chain were used in the polymerization of methyl methacrylate (MMA) and styrene (St) at 80°C to obtain PMMA‐b‐PTHF‐b‐PMMA and PMMA‐b‐PTHF‐b‐PSt linear and star multiblock copolymers. Polymers obtained were characterizated by GPC, FT‐IR, DSC, TGA, 1H‐NMR, and 13C‐NMR techniques and the fractional precipitation method. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 219–226, 2004  相似文献   

16.
Poly(methyl methacrylate) grafted silica (SiO2‐g‐PMMA) was synthesized via in situ suspension polymerization. To achieve better uniform dispersion, hexadecyltrimethylammonium bromide (CTAB) was introduced into xylene to manipulate SiO2 aggregation. SiO2‐g‐PMMA or SiO2 was incorporated into PMMA matrix by in situ polymerization to prepare PMMA‐based nanocomposites. The effect of CTAB amount, in the range 0–35 wt %, on the modification was evaluated by DLS, TGA, and FTIR. Furthermore, morphology, optical, mechanical, and thermal properties of PMMA nanocomposites was characterized by SEM, UV–vis, DMA, and TGA. Owing to surface functionalization, SiO2‐g‐PMMA exhibited far more excellent compatibility and dispersion in matrix compared with SiO2. Surface hardness and thermal properties of nanocomposites were enhanced significantly under the premise in high transparency. It is expected that transparent nanocomposites with promising scratch‐resistance could have wide applications, such as airplane shielding window and daily furniture. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44612.  相似文献   

17.
Biodegradable polyrotaxane‐based triblock copolymers were synthesized via the bulk atom transfer radical polymerization (ATRP) of n‐butyl methacrylate (BMA) initiated with polypseudo‐rotaxanes (PPRs) built from a distal 2‐bromoisobutyryl end‐capped poly(ε‐caprolactone) (Br‐PCL‐Br) with α‐cyclodextrins (α‐CDs) in the presence of Cu(I)Br/N,N,N′,N″,N″‐pentamethyldiethylenetriamine at 45 ºC. The structure was characterized in detail by means of 1H NMR, gel permeation chromatography, wide‐angle X‐ray diffraction, DSC and TGA. When the feed molar ratio of BMA to Br‐PCL‐Br was changed from 128 to 300, the degree of polymerization of PBMA blocks attached to two ends of the PPRs was in the range 382 ? 803. Although about a tenth of the added α‐CDs were still threaded onto the PCL chain after the ATRP process, the movable α‐CDs made a marked contribution to the mechanical strength enhancement, blood anticoagulation activity and protein adsorption repellency of the resulting copolymers. Meanwhile, they could also protect the copolymers from the attack of H2O and Lipase AK Amano molecules, exhibiting a lower mass loss as evidenced in hydrolytic and enzymatic degradation experiments. © 2013 Society of Chemical Industry  相似文献   

18.
Liquid crystalline diblock copolymers with different molecular weights and low polydispersities were synthesized by atom transfer radical polymerization of methyl methacrylate (MMA) and 2,5‐bis[(4‐methoxyphenyl)oxycarbonyl]styrene (MPCS) monomers. The block architecture (coil‐conformation of MMA segment and rigid‐rod of MPCS segment) of the copolymer was experimentally confirmed by a combination of 1H nuclear magnetic resonance and gel permeation chromatograph techniques. The liquid crystalline behaviour of the copolymer was studied using differential scanning calorimetry and polarized optical microscope. It was found that the liquid crystalline behaviour was dependent on the number average molecular weight of the rigid segment. Only those copolymers with Mn(GPC) of the rigid block above 9200 g mol?1 could form liquid crystalline phases higher than the glass transition temperature of the rigid block. The random copolymers MPCS‐co‐MMA were also synthesized by conventional free radical polymerization. The molar content of MPCS in MPCS‐co‐MMA had to be higher than 71% to maintain liquid crystalline behaviour. © 2003 Society of Chemical Industry  相似文献   

19.
Diblock copolymers of poly(L ‐lactide)‐block‐poly(methyl methacrylate) (PLLA‐b‐PMMA) were synthesized through a sequential two‐step strategy, which combines ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP), using a bifunctional initiator, 2,2,2‐trichloroethanol. The trichloro‐terminated poly(L ‐lactide) (PLLA‐Cl) with high molecular weight (Mn,GPC = 1–12 × 104 g/mol) was presynthesized through bulk ROP of L ‐lactide (L ‐LA), initiated by the hydroxyl group of the double‐headed initiator, with tin(II) octoate (Sn(Oct)2) as catalyst. The second segment of the block copolymer was synthesized by the ATRP of methyl methacrylate (MMA), with PLLA‐Cl as macroinitiator and CuCl/N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) as catalyst, and dimethyl sulfoxide (DMSO) was chosen as reaction medium due to the poor solubility of the macroinitiator in conventional solvents at the reaction temperature. The trichloroethoxyl terminal group of the macroinitiator was confirmed by Fourier transform infrared spectroscopy (FTIR) and 1H‐NMR spectroscopy. The comprehensive results from GPC, FTIR, 1H‐NMR analysis indicate that diblock copolymers PLLA‐b‐PMMA (Mn,GPC = 5–13 × 104 g/mol) with desired molecular composition were obtained by changing the molar ratio of monomer/initiator. DSC, XRD, and TG analyses establish that the crystallization of copolymers is inhibited with the introduction of PMMA segment, which will be beneficial to ameliorating the brittleness, and furthermore, to improving the thermal performance. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
The effects of three series of self‐synthesized poly(methyl methacrylate) (PMMA)‐based low‐profile additives (LPAs), including PMMA, poly(methyl methacrylate‐co‐butyl acrylate), and poly(methyl methacrylate‐co‐butyl acrylate‐co‐maleic anhydride), with different chemical structures and MWs on the miscibility, cured‐sample morphology, curing kinetics, and glass‐transition temperatures for styrene (ST)/unsaturated polyester (UP) resin/LPA ternary systems were investigated by group contribution methods, scanning electron microscopy, differential scanning calorimetry (DSC), and dynamic mechanical analysis, respectively. Before curing at room temperature, the degree of phase separation for the ST/UP/LPA systems was generally explainable by the calculated polarity difference per unit volume between the UP resin and LPA. During curing at 110°C, the compatibility of the ST/UP/LPA systems, as revealed by cured‐sample morphology, was judged from the relative magnitude of the DSC peak reaction rate and the broadness of the peak. On the basis of Takayanagi's mechanical models, the effects of LPA on the final cure conversion and the glass‐transition temperature in the major continuous phase of ST‐crosslinked polyester for the ST/UP/LPA systems was also examined. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3369–3387, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号