首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 0 毫秒
1.
Male fertility relies on the ability of spermatozoa to fertilize the egg in the female reproductive tract (FRT). Spermatozoa acquire activated motility during epididymal maturation; however, to be capable of fertilization, they must achieve hyperactivated motility in the FRT. Extensive research found that three protein phosphatases (PPs) are crucial to sperm motility regulation, the sperm-specific protein phosphatase type 1 (PP1) isoform gamma 2 (PP1γ2), protein phosphatase type 2A (PP2A) and protein phosphatase type 2B (PP2B). Studies have reported that PP activity decreases during epididymal maturation, whereas protein kinase activity increases, which appears to be a requirement for motility acquisition. An interplay between these PPs has been extensively investigated; however, many specific interactions and some inconsistencies remain to be elucidated. The study of PPs significantly advanced following the identification of naturally occurring toxins, including calyculin A, okadaic acid, cyclosporin, endothall and deltamethrin, which are powerful and specific PP inhibitors. This review aims to overview the protein phosphorylation-dependent biochemical pathways underlying sperm motility acquisition and hyperactivation, followed by a discussion of the PP inhibitors that allowed advances in the current knowledge of these pathways. Since male infertility cases still attain alarming numbers, additional research on the topic is required, particularly using other PP inhibitors.  相似文献   

2.
Osteoclasts (OCs), which are responsible for bone resorption, play a critical role in cholesterol-induced bone loss and recent studies have suggested that various micro-RNAs (miRs) contribute to modulating OCs. We hypothesized that 7-ketocholesterol (7-KC), a metabolite responsible for cholesterol-induced bone loss, induces miR-107-5p, which affects OCs. Overexpression and knock-down of miR-107-5p were performed using miR-107-5p mimic and anti-miR-107-5p, respectively. The effects of miR-107-5p on OCs were analyzed by tartrate-resistant alkaline phosphatase staining, qPCR, and Western blot. MiR-107-5p was upregulated after 7-KC exposure in receptor activator of nuclear factor kappa-Β ligand-stimulated OCs. Furthermore, miR-107-5p upregulation was also observed in tibiae from an atherogenic diet-fed mice compared with mice fed with a normal diet. MiR-107-5p overexpression enhanced the area and number of OCs, whereas inhibiting the endogenous expression of miR-107-5p generated by 7-KC had the opposite effect. Among the possible candidates, mitogen-activated protein kinase phosphatase-1, a stress-responsive dual-specificity phosphatase that inactivates mitogen-activated protein kinase (MKP1), has been proven to be a target gene of miR-107-5p, as demonstrated by the direct interaction between miR-107-5p and the 3′-untranslated region of MKP1. Collectively, our findings demonstrate that 7-KC-induced miR-107-5p promotes differentiation and function of OCs by downregulating MKP1.  相似文献   

3.
Recent evidence suggests that amyloid and tau protein are of vital importance in post-ischemic death of CA1 pyramidal neurons of the hippocampus. In this review, we summarize protein alterations associated with Alzheimer’s disease and their gene expression (amyloid protein precursor and tau protein) after cerebral ischemia, as well as their roles in post-ischemic hippocampus neurodegeneration. In recent years, multiple studies aimed to elucidate the post-ischemic processes in the development of hippocampus neurodegeneration. Their findings have revealed the dysregulation of genes for amyloid protein precursor, β-secretase, presenilin 1 and 2, tau protein, autophagy, mitophagy, and apoptosis identical in nature to Alzheimer’s disease. Herein, we present the latest data showing that amyloid and tau protein associated with Alzheimer’s disease and their genes play a key role in post-ischemic neurodegeneration of the hippocampus with subsequent development of dementia. Therefore, understanding the underlying process for the development of post-ischemic CA1 area neurodegeneration in the hippocampus in conjunction with Alzheimer’s disease-related proteins and genes will provide the most important therapeutic development goals to date.  相似文献   

4.
Presenilin-1 (PSEN1) is a crucial subunit within the γ-secretase complex and regulates β-amyloid (Aβ) production. Accumulated evidence indicates that n-butylidenephthalide (BP) acts effectively to reduce Aβ levels in neuronal cells that are derived from trisomy 21 (Ts21) induced pluripotent stem cells (iPSCs). However, the mechanism underlying this effect remains unclear. This article aims to investigate the possible mechanisms through which BP ameliorates the development of Alzheimer’s disease (AD) and verify the effectiveness of BP through animal experiments. Results from RNA microarray analysis showed that BP treatment in Ts21 iPSC-derived neuronal cells reduced long noncoding RNA (lncRNA) CYP3A43-2 levels and increased microRNA (miR)-29b-2-5p levels. Bioinformatics tool prediction analysis, biotin-labeled miR-29b-2-5p pull-down assay, and dual-luciferase reporter assay confirmed a direct negative regulatory effect for miRNA29b-2-5p on lnc-RNA-CYP3A43-2 and PSEN1. Moreover, BP administration improved short-term memory and significantly reduced Aβ accumulation in the hippocampus and cortex of 3xTg-AD mice but failed in miR-29b-2-5p mutant mice generated by CRISP/Cas9 technology. In addition, analysis of brain samples from patients with AD showed a decrease in microRNA-29b-2-5p expression in the frontal cortex region. Our results provide evidence that the LncCYP3A43-2/miR29-2-5p/PSEN1 network might be involved in the molecular mechanisms underlying BP-induced Aβ reduction.  相似文献   

5.
6.
7.
(1) Background: In the development of new and more effective anticancer approaches, combined treatments appear of great interest. Combination therapy could be of importance in the management of glioblastoma (GBM), a lethal malignancy that accounts for 42% of cancer of the central nervous system, with a median survival of 15 months. This study aimed to verify the activity on a glioblastoma cancer cell line of one of the most active compounds of a novel series of tubulin polymerization inhibitors based on the 1-(3′,4′,5′-trimethoxyphenyl)-2-aryl-1H-imidazole scaffold, used in combination with a miRNA inhibitor molecule targeting the oncomiRNA miR-10b-5p. This microRNA was selected in consideration of the role of miR-10b-5p on the onset and progression of glioblastoma. (2) Methods: Apoptosis was analyzed by Annexin-V and Caspase 3/7 assays, efficacy of the anti-miR-10b-5p was assessed by determining the miR-10b-5p content by RT-qPCR. (3) Results: The results obtained show that a “combination therapy” performed by combining the use of an anti-miR-10b-5p and a 1-(3′,4′,5′-trimethoxyphenyl)-2-aryl-1H-imidazole derivative is an encouraging strategy to boost the efficacy of anticancer therapies and at the same time to reduce side effects.  相似文献   

8.
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficient social interaction and communication besides repetitive, stereotyped behaviours. A characteristic feature of ASD is altered dendritic spine density and morphology associated with synaptic plasticity disturbances. Since microtubules (MTs) regulate dendritic spine morphology and play an important role in spine development and plasticity the aim of the present study was to investigate the alterations in the content of neuronal α/β-tubulin and Tau protein level as well as phosphorylation state in the valproic acid (VPA)-induced rat model of autism. Our results indicated that maternal exposure to VPA induces: (1) decrease the level of α/β-tubulin along with Tau accumulation in the hippocampus and cerebral cortex; (2) excessive Tau phosphorylation and activation of Tau-kinases: CDK5, ERK1/2, and p70S6K in the cerebral cortex; (3) up-regulation of mTOR kinase-dependent signalling in the hippocampus and cerebral cortex of adolescent rat offspring. Moreover, immunohistochemical staining showed histopathological changes in neurons (chromatolysis) in both analysed brain structures of rats prenatally exposed to VPA. The observed changes in Tau protein together with an excessive decrease in α/β-tubulin level may suggest destabilization and thus dysfunction of the MT cytoskeleton network, which in consequence may lead to the disturbance in synaptic plasticity and the development of autistic-like behaviours.  相似文献   

9.
10.
Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused by mutations in the gene that encodes methyl CpG-binding protein 2 (MECP2) and is characterized by the loss of acquired motor and language skills, stereotypic movements, respiratory abnormalities and autistic features. There has been no effective treatment for this disorder until now. In this study, we used a Mecp2-null (KO) mouse model of RTT to investigate whether repeated intraperitoneal treatment with the 5-HT1A receptor agonist tandospirone could improve the RTT phenotype. The results showed that administration of tandospirone significantly extended the lifespan of Mecp2-KO mice and obviously ameliorated RTT phenotypes, including general condition, hindlimb clasping, gait, tremor and breathing in Mecp2-KO mice. Tandospirone treatment significantly improved the impairment in GABAergic, glutaminergic, dopaminergic and serotoninergic neurotransmission in the brainstem of Mecp2-KO mice. Decreased dopaminergic neurotransmission in the cerebellum of Mecp2-KO mice was also significantly increased by tandospirone treatment. Moreover, RNA-sequencing analysis found that tandospirone modulates the RTT phenotype, partially through the CREB1/BDNF signaling pathway in Mecp2-KO mice. These findings provide a new option for clinical treatment.  相似文献   

11.
As cannabis use during pregnancy increases, it is important to understand its effects on the developing fetus. Particularly, the long-term effects of its psychoactive component, delta-9-tetrahydrocannabinol (THC), on the offspring’s reproductive health are not fully understood. This study examined the impact of gestational THC exposure on the miRNA profile in adult rat ovaries and the possible consequences on ovarian health. Prenatal THC exposure resulted in the differential expression of 12 out of 420 evaluated miRNAs. From the differentially expressed miRNAs, miR-122-5p, which is highly conserved among species, was the only upregulated target and had the greatest fold change. The upregulation of miR-122-5p and the downregulation of its target insulin-like growth factor 1 receptor (Igf1r) were confirmed by RT-qPCR. Prenatally THC-exposed ovaries had decreased IGF-1R-positive follicular cells and increased follicular apoptosis. Furthermore, THC decreased Igf1r expression in ovarian explants and granulosa cells after 48 h. As decreased IGF-1R has been associated with diminished ovarian health and fertility, we propose that these THC-induced changes may partially explain the altered ovarian follicle dynamics observed in THC-exposed offspring. Taken together, our data suggests that prenatal THC exposure may impact key pathways in the developing ovary, which could lead to subfertility or premature reproductive senescence.  相似文献   

12.
13.
Vascular endothelial cells cover the luminal surface of blood vessels in a monolayer and play a role in the regulation of vascular functions, such as the blood coagulation-fibrinolytic system. When the monolayer is severely or repeatedly injured, platelets aggregate at the damaged site and release transforming growth factor (TGF)-β1 in large quantities from their α-granules. Cadmium is a heavy metal that is toxic to various organs, including the kidneys, bones, liver, and blood vessels. Our previous study showed that the expression level of Zrt/Irt-related protein 8 (ZIP8), a metal transporter that transports cadmium from the extracellular fluid into the cytosol, is a crucial factor in determining the sensitivity of vascular endothelial cells to cadmium cytotoxicity. In the present study, TGF-β1 was discovered to potentiate cadmium-induced cytotoxicity by increasing the intracellular accumulation of cadmium in cells. Additionally, TGF-β1 induced the expression of ZIP8 via the activin receptor-like kinase 5-Smad2/3 signaling pathways; Smad3-mediated induction of ZIP8 was associated with or without p38 mitogen-activated protein kinase (MAPK). These results suggest that the cytotoxicity of cadmium to vascular endothelial cells increases when damaged endothelial monolayers that are highly exposed to TGF-β1 are repaired.  相似文献   

14.
The FMS-like tyrosine kinase 3 (FLT3) gene is mutated in one-third of patients with de novo acute myeloid leukemia (AML). Mutated FLT3 variants are constitutively active kinases signaling via AKT kinase, MAP kinases, and STAT5. FLT3 inhibitors have been approved for the treatment of FLT3-mutated AML. However, treatment response to FLT3 inhibitors may be short-lived, and resistance may emerge. Compounds targeting STAT5 may enhance and prolong effects of FLT3 inhibitors in this subset of patients with FLT3-mutated AML. Here STAT5-inhibitor AC-4-130, FLT3 inhibitor midostaurin (PKC412), BMI-1 inhibitor PTC596, MEK-inhibitor trametinib, MCL1-inhibitor S63845, and BCL-2 inhibitor venetoclax were assessed as single agents and in combination for their ability to induce apoptosis and cell death in leukemic cells grown in the absence or presence of bone marrow stroma. Synergistic effects on cell viability were detected in both FLT3-mutated and FLT3-wild-type AML cells treated with AC-4-130 in combination with the MCL1 inhibitor S63845. AML patient samples with a strong response to AC-4-130 and S63845 combination treatment were characterized by mutated FLT3 or mutated TET2 genes. Susceptibility of AML cells to AC-4-130, PTC596, trametinib, PKC412, and venetoclax was altered in the presence of HS-5 stroma. Only the MCL1 inhibitor S63845 induced cell death with equal efficacy in the absence or presence of bone marrow stroma. The combination of the STAT5-inhibitor AC-4-130 and the MCL1 inhibitor S63845 may be an effective treatment targeting FLT3-mutated or TET2-mutated AML.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号