首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用无针式搅拌头对(1.0+1.5)mm厚6005A-T6铝合金进行搅拌摩擦点焊,对焊后组织形貌、拉伸性能和断口形貌研究分析。结果表明,焊点接头组织分为4个区域,其中搅拌区的晶粒最为细小。点焊接头抗剪切性能明显高于其抗剥离性能,搅拌头停留时间的变化仅对剥离性能有所影响,对拉剪性能影响不大,拉剪断口显示为韧性断裂。  相似文献   

2.
针对车身焊点最主要的拉伸-剪切载荷的仿真,提出了内聚力焊点模型(CZWM)的等效建模方法。通过单焊点接头的剪切和多角度拉伸对焊点的初始损伤和断裂能进行测定,建立接头的等效模型。该模型与单焊点接头的拉伸-剪切过程相吻合。同时,通过3种双焊点接头对CZWM的有效性进行了验证。结果表明:CZWM在拉伸-剪切失效载荷(TSFL)和失效位移(FD)的最大偏差分别为9.3%和7.1%;双焊点接头的焊点分布与外载荷方向平行时接头承载最强,垂直时承载最差,斜交居中。该模型为车身FSSW焊点力学行为的数值模拟提供了一种选择。  相似文献   

3.
建立了压印接头拉剪强度模型并提出接头强度的理论计算方法。建立了压印连接成形的二维模型,模拟压印成型过程并分析金属流动规律,模拟结果与试验结果一致。由压印连接过程的模拟结果得到压印接头的三维模型,由此三维模型模拟接头的拉剪过程,得到接头的载荷-位移曲线和失效形式,模拟结果与试验结果一致,求解误差为3.4%。根据压印接头拉剪的两种失效形式(颈部断裂失效和上下板分离失效),提出了压印接头的理论计算公式。并由12种压印接头对计算公式进行验证,求解结果与试验结果吻合,最大强度误差为8.9%。  相似文献   

4.
碳纤维增强复合材料(CFRP)易发生铆接损伤,通过试验方法开展垫圈/衬套铆接损伤行为及其拉剪性能研究,研究结果表明:镦头不均匀膨胀及下压会导致净铆接和衬套铆接出现不同程度、多损伤模式铆接损伤,而垫圈/衬套铆接后并未出现明显损伤。净铆接试件与垫圈/衬套铆接试件的拉剪力-位移响应呈现出明显的线性、渐进损伤和失效破坏的特征,而衬套铆接由于减小了镦头与层板的有效紧固面积,衬套铆接试件拉剪力-位移响应仅包含线性和失效破坏阶段,其拉剪峰值载荷亦最低。净铆接试件和垫圈/衬套铆接试件的拉伸失效模式均为层板剪切与铆钉拉脱耦合失效,拉脱失效模式为层板铺层断裂和分层,且伴有层板弯曲变形;衬套铆接试件拉剪过程中均发生铆钉直接拉脱破坏。  相似文献   

5.
为了正确预测铝锂合金/FM94胶接接头的强度与失效特征,采用ABAQUS软件建立胶接接头的内聚力仿真模型. 针对内聚力模型关键参数的确定问题,利用材料力学和断裂力学相关理论推导I、II型断裂失效形式下断裂能的计算公式;通过实验测定FM94胶接铝锂合金标准双悬臂梁(I型失效)和三点弯曲试样(II型失效)的力-位移曲线,计算并确定不同失效模式下的内聚力模型参数;采用三角形内聚力理论模型和所确定的模型参数进行双悬臂梁标准试样、三点弯曲标准试样及单搭接接头的强度与断裂失效过程的数值仿真. 结果表明:仿真结果与实验数据较一致,在不同加载速率下断裂载荷最大误差为4.4%,断裂位移最大误差为3.8%,验证内聚力模型参数确定方法合理,模型参数正确.  相似文献   

6.
制备轻合金板材组合自冲铆接头,通过静力学实验获得各组接头的静失效载荷、失效位移及能量吸收值等力学性能参数,分析了基板强度对接头失效形式及静失效载荷的影响.通过扫描电子显微镜(SEM)对接头失效断口进行观测,分析了接头的微观失效机理.结果表明:基板强度影响接头的失效形式,当两基板的屈服强度差别较大时,接头失效形式为屈服强度较低的板断裂;当两基板屈服强度接近时,接头因铆钉与基板分离失效;基板发生断裂失效时接头断口为韧性断裂机制.当接头失效形式相同时,发生失效基板的屈服强度越大,接头静失效载荷越高.  相似文献   

7.
为了揭示碳纤维增强复合材料(CFRP)/铝合金粘接接头在高温环境中的老化失效规律,加工了处于剪应力、拉应力和拉剪组合应力状态的粘接接头,在高温(80℃)环境中分别进行了10、20、30、40、50天的老化测试,分析了失效强度、失效模式的变化规律,建立了失效准则响应面。结果表明:随着拉应力比例的增加,失效强度下降更明显,下降趋势由二次多项式向线性转变,失效模式由内聚失效转变为内聚、纤维撕裂和界面失效的混合失效模式,这主要是由CFRP老化引起的;失效准则响应面平均误差为3.0%,能够对不同应力状态下的接头进行失效预测。因此,在粘接结构中降低拉应力比例能够提高承载能力,同时在失效预测时需要考虑不同应力状态的影响。  相似文献   

8.

301L/Q235B异种钢电阻点焊接头静力学性能及断裂数值分析

王昌坤1,2*,刘慧玉1,范佳斐1,左银龙3,胡立国4

(1.北京交通大学 机械与电子控制工程学院,北京 100044;2.中铁上海设计院集团有限公司,上海 200070;3.中车唐山机车车辆有限公司,唐山 063000;4.中车长春轨道客车股份有限公司,长春 130062)

摘 要:对301L-DLT/Q235B异种钢2.0 mm板不同熔核尺寸的电阻点焊拉剪试样进行静拉伸试验。用有限元软件模拟出了点焊接头的力-位移曲线,分析了点焊接头拉伸断裂过程的应力应变分布和断裂演变过程。熔核硬度高于板材和热影响区。在静拉伸载荷作用下,电阻点焊接头拉伸过程的应力、应变随位移增大呈指数关系增长,301L板加载侧熔核边缘的应力值最大。点焊接头以熔核拔出断裂失效试样的静拉伸强度和塑性变形量优于以界面断裂模,由熔核界面断裂向拔出断裂转变的搭接面临界熔核直径为7.12 mm,约5 .

关键词:301L/Q235B异种电阻点焊;静力学性能;断裂模式;有限元分析

  相似文献   

9.
通过试验方法研究了5052铝合金和H62铜合金异质材料搭接自冲铆接头的力学性能。获得了表征接头性能的力-位移曲线和载荷-寿命曲线,采用数理统计方法检验了数据的有效性。对接头强度、刚度、抗冲击性能、失效形式、失效机理进行了分析。结果表明:刚度随接头载荷而变化,疲劳强度随刚度的增大而增强,SCC接头静强度最高,SAA2次之,SAC高于SAA1接头,板材厚度、材质及铆钉长度影响接头静载强度,上板材质对接头强度影响更大,下板材质对接头抗冲击性能影响大于上板,板材厚度影响失效位移,静载失效形式皆为铆钉与下板分离;SCC接头疲劳性能最优,SAA2次之,SAC最小,微动滑移、板材厚度、材质影响接头疲劳强度,同种材料接头以下板断裂为主,异质材料接头较软板材断裂失效。  相似文献   

10.
针对复合材料压缩载荷及吸能特性现有研究的不足,提出不同壁厚、不同胞元数量的玻璃纤维蜂窝管结构,采用万能试验机进行静态压缩试验。结果表明:蜂窝管壁厚值较小时,其主要失效形式为纤维断裂;壁厚值较大时,其失效形式为纤维断裂损伤及纤维层分层。压缩峰值载荷及总吸能随胞元数量及壁厚值增加而增大,比吸能仅随其壁厚值增加而增大。壁厚值0.4 mm的单胞元蜂窝管压缩峰值载荷取最小值2.11 kN,对应的能量吸收总量为23.9 J,比吸能为7.96 J·g-1;壁厚值0.8 mm的八胞元蜂窝管压缩峰值载荷取最大值53.1 kN,对应的能量吸收总量为1 353.6 J,比吸能为36.88 J·g-1。  相似文献   

11.
以正交试验为基础,利用灰色关联度研究了不等厚异质点焊接头的多目标优化,通过极差分析得到以熔核直径、压痕率和最大拉剪力为衡量因子的最优参数,通过方差分析研究了各点焊参数对衡量因子的影响程度。结果表明:1.2mm的DP1180和1.5mm的DP590异质点焊接头最优工艺参数是:焊接电流为9.5kA、焊接时间为22cycles、电极压力为8.48kN,此时点焊接头的熔核直径为6.76mm、压痕率为17.70%、最大拉剪力为19.49kN,在保证点焊接头强度的同时降低了压痕率。点焊参数对衡量因子影响的主次顺序为焊接电流、焊接时间和电极压力。  相似文献   

12.
为深入研究铜钢板压印-粘接复合连接的静力学性能和失效机理,本文选取铜合金H62同种组合及与镀锌钢的异种组合进行单搭及T型试件压印-粘接复合连接,借助MTS材料试验机对试件进行拉伸-剪切试验及剥离试验,采用SEM扫描电镜对典型失效断口进行微观分析,分析试件的失效强度及失效模式,测试铜合金压印-粘接复合连接接头的静力学性能,结果表明:铜钢板压印-粘接复合连接的抗剪切强度远优于抗剥离强度,且其接头强度主要由粘接剂决定,失效模式取决于压印结构成型情况.H62-H62压印-粘接复合接头的抗剪切力强度均值为5 021.52 N,抗剥离强度均值为943.05 N,接头为拉脱失效伴随轻微擦伤;H62-镀锌钢压印-粘接复合接头的抗剪切强度为H62-H62接头的1.2倍,失效模式为颈部断裂;抗剥离强度为H62-H62接头的2.3倍,接头为"上板撕裂"失效.  相似文献   

13.
为了解决机身蒙皮、纵梁和框连接区域的复杂传力及结构设计问题,设计了复杂胶结整体复合材料接头,完成了该整体复合材料接头的拉伸试验,得到了其应变-载荷曲线和损伤模式。建立了整体复合材料接头数值分析模型,研究了其在拉伸载荷下的损伤起始、扩展及失效过程。结果表明:接头首次降载和极限破坏载荷分别为120.82和168.11 kN;初始损伤发生在左下侧角盒的角弯曲处,然后沿着短翼缘,长翼缘以及腹板间的圆弧过渡区扩展,导致上下角盒的胶结界面脱黏,角盒和L型层合板的胶结界面分层失效。数值计算得到的首次降载和极限破坏载荷与试验结果相比误差分别为6.68%和2.61%,两者符合较好。  相似文献   

14.
针对SUS304不锈钢点焊接头进行静力学和疲劳试验,采用三参数幂函数方法建立点焊接头的载荷-寿命曲线;采用超声扫描显微镜对接头点焊区域进行超声波C扫描成像,分析焊接电流对点焊熔核直径及抗拉强度的影响.结果表明:基于熔核C扫描图像的灰度值分布特征,可清晰甄别点焊接头熔核直径以及过烧、飞溅等熔核内部缺陷,实现点焊接头的无损检测;当焊接电流为8.5~10.5 k A时,点焊接头熔核直径从4.03 mm增至5.04 mm,接头抗拉强度呈先增大后减小的变化趋势,在焊接电流10.0 k A时,抗拉强度值出现拐点,接头最大抗拉强度为12.91 k N.在30%载荷水平时,点焊接头疲劳断裂形式为纽扣断裂;在20%和15%载荷水平时,基板呈眉状裂纹疲劳断裂.  相似文献   

15.
为了充分发挥陶瓷材料抗压性能好和碳纤维材料高比刚、高比强、耐冲击性能好等优点,实现两者稳定、高效的连接,采用多壁碳纳米管(MWCNTs)对环氧胶粘剂进行增强改性,探讨了MWCNTs添加量以及胶层厚度对CFRP-陶瓷接头剪切强度和断裂模式的影响。3D轮廓仪、旋转流变仪、综合热分析仪及胶接接头力学性能测试结果表明:MWCNTs提高了CFRP-陶瓷接头的剪切强度,当MWCNTs质量分数为1.00%、胶层厚度为0.5 mm时,接头剪切强度达到最大值20.01 MPa,提高了19.96%;同时,不同胶层厚度的CFRP-陶瓷接头经历不同的失效阶段,胶层厚度为0.5 mm,表现在搭接区端部胶层开裂,胶层厚度超过1.0 mm,表现在搭接区端部胶层开裂逐渐向胶层内部断裂过渡;在此最优含量下,改性后环氧胶粘剂固化反应速率最大、热分解温度最高、热稳定性最佳,热分解残余剩余率提高了9.57%,但是,纳米颗粒的增强效果与其团聚性能相关,随着纳米颗粒含量增加,改性效果反而降低。  相似文献   

16.
为了研究焊点拉伸力学性能,选取尺寸相同、晶体取向相似的Sn3.0Ag0.5Cu(SAC305)钎焊接头与Sn3.0Ag3.0Bi3.0In(SABI333)钎焊接头进行相同拉伸速度的拉伸实验.同时,选取SABI333钎焊接头中尺寸相同的单晶焊点与孪晶焊点进行相同拉伸速度的拉伸实验.利用EBSD与SEM对焊点的晶体取向和表面形貌进行表征.结果表明:SABI333焊点的抗拉强度远高于SAC305焊点,并且2种不同成分的焊点呈现完全不同的断裂方式.SAC305焊点发生韧性断裂,SABI333焊点在发生微量塑性变形之后断裂.SABI333焊点中单晶焊点和孪晶焊点在拉伸过程中表现出不同的拉伸性能.孪晶焊点在拉伸过程中未发生塑性变形,并且在钎料基体与铜棒交界处断裂.  相似文献   

17.
采用裂纹尖端张开位移(crack tip opening displacement,CTOD)试验研究了2219铝合金搅拌摩擦焊(friction stir welding,FSW)接头各区域的断裂性能,分析了搅拌摩擦焊接头组织结构对接头断裂性能的影响.研究结果表明,2219铝合金搅拌摩擦焊接头的断裂呈韧性,但接头各区域韧性分布呈现明显的不均匀性,焊核区断裂韧性最好,热机影响区和热影响区次之,但均高于母材的断裂韧性.  相似文献   

18.
采用不同轴肩结构、轴肩尺寸及搅拌针结构的搅拌头,对4mm板厚6082-T6铝合金板材对接接头实施了搅拌摩擦焊接,对焊后搅拌头形貌及接头力学性能进行了对比分析,试验结果表明,选用不同结构尺寸的搅拌头焊接后,均能获得成型良好、表面光滑、无焊接缺陷的焊缝,接头抗拉强度均大于250 MPa;使用设计制造的轴肩为同心圆,搅拌针为三截面结构的搅拌头,在旋转速度为1 400r/min和焊接速度为1 000mm/min的工艺条件下,获得的接头抗拉强度可达285MPa,断裂位置发生在焊缝前进侧的热影响区。  相似文献   

19.
对84mm轨道客车用6082-T6铝合金搅拌摩擦焊接头疲劳性能以及断口特征进行试验研究。结果表明,搅拌摩擦焊接头疲劳循环次数随施加载荷减小而增加,当N=107时,疲劳极限值为110MPa,且疲劳断裂主要发生在前进侧热机械影响区。在预制缺口、相同载荷应力条件下,焊核区疲劳循环次数达7.4万次,断口表现为沿晶断裂,裂纹由疲劳源向四周扩展,晶粒细化提高了焊核区疲劳寿命;而前进侧热机械影响区疲劳循环次数最少为2.5万次,裂纹沿晶界向焊核区方向扩展,扩展方式为沿晶和穿晶混合断裂,晶粒发生弯曲变形以及第二相粒子剥离是接头ATMAZ疲劳性能下降的主要原因。  相似文献   

20.
以3种不同的单向加载方式对以木质OSB覆面的SIP墙体进行侧向加载实验,对比分析3种加载方式下SIP墙体的破坏形式及这3种加载方式对墙体抗剪性能参数的影响,结果表明:3种加载方式得到的墙体的抗剪性能指标有所差异,其中,采用ISO22452加载协议,即对墙体施加持续增加载荷的加载方式所得到的极限承载力最大、极限位移和延性系数居中,分别为46.06 kN、71.83 mm、3.31;采用ASTM E72-05加载时极限承载力居中、极限位移及延性系数最大,分别为:40.66 kN、76.97 mm、4.07。采用ASTM E564-06加载,即对墙体施加阶段载荷并使阶段目标载荷持续作用一段时间的方式,所得到的极限承载力、极限位移及延性系数最小,分别为37.73 kN、54.92 mm、2.91;3种加载方式对墙体破坏形式的影响不大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号