首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conclusions  A series of fluorinated coatings suitable for low temperature curing can be obtained by the proper combination of fluoropolyether macromers with the cyclic trimers of HDI and IPDI. In all cases they are characterised by general excellent surface properties (easy cleanability, and antigraffiti performances), good weatherability and chemical resistance. Mechanical properties can be adjusted by proper selection of the polyisocyanate or mixing (formulation) of the single resins, typically the IPDI macromer gives harder coatings with very short tack-free times, while the HDI-based materials have a better abrasion resistance and reactivity at low temperature. Many mechanical and surface properties of Fluorobase Z coatings can be correlated to their distinctive polyphase nature. In particular, the high molecular mobility of the fluoropolyether chains linked to polar functions and their enrichment in the top layer of the coating surface may be one of the reasons for the excellent stain release properties. Applications may include any sector where a high durability and protection effect are required.  相似文献   

2.
Coating medical implants with antibacterial polymers may prevent postoperative infections which are a common issue for conventional titanium implants and can even lead to implant failure. Easily applicable diblock copolymers are presented that form polymer brushes via “grafting to” mechanism on titanium and equip the modified material with antibacterial properties. The polymers carry quaternized pyridinium units to combat bacteria and phosphonic acid groups which allow the linear chains to be anchored to metal surfaces in a convenient coating process. The polymers are synthesized via reversible-addition-fragmentation-chain-transfer (RAFT) polymerization and postmodifications and are characterized using NMR spectroscopy and SEC. Low grafting densities are a major drawback of the “grafting to” approach compared to “grafting from”. Thus, the number of phosphonic acid groups in the anchor block are varied to investigate and optimize the surface binding. Modified titanium surfaces are examined regarding their composition, wetting behavior, streaming potential, and coating stability. Evaluation of the antimicrobial properties revealed reduced bacterial adhesion and biofilm formation for certain polymers, albeit the cell biocompatibility against human gingival fibroblasts is also impaired. The presented findings show the potential of easy-to-apply polymer coatings and aid in designing next-generation implant surface modifications.  相似文献   

3.
This article demonstrates a comparative investigation about the effect of diisocyanate on pyridine containing shape memory polyurethanes (Py‐SMPUs), which are synthesized with N,N‐bis(2‐hydroxylethyl)isonicotinamide (BINA) and four different diisocyanates: 1,6‐hexanediisocyante (HDI), isophorone diisocyanate (IPDI), methylene diphenyl diisocyanate (MDI), and tolylene diisocyanate (TDI). Results show that all BINA–SMPU systems have amorphous reversible phase. Comparatively, the MDI–BINA and TDI–BINA systems show higher Tg; and the HDI–BINA and IPDI–BINA systems show better thermal stability. In addition, the HDI–BINA and the IPDI–BINA systems exhibit good thermal‐induced shape memory effect and good moisture‐sensitive shape memory effect due to their better moisture absorption properties. Particularly, the HDI–BINA system has better response speed and better shape recovery. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40721.  相似文献   

4.
以六次甲基二异氰酸酯(HDI)、异佛尔酮二异氰酸酯(IPDI)和聚醚PPG等为原料,通过丙酮法合成了PVC手套涂层用高强度、高伸长率水性聚氨酯乳液,探讨了n(NCO)/n(OH)、n(IPDI)/n(HDI)和后扩链剂乙二胺对水性聚氨酯性能的影响,并对水性聚氨酯乳液进行了冻融稳定性测试。结果表明,当n(NCO)/n(OH)=4.5、n(IPDI)/n(HDI)=1.5:1时,后扩链剂用量为0.7 g时,制备的水性聚氨酯具有良好的低温涂层稳定性,胶膜的拉伸强度24.61 MPa,伸长率达到663.5%,且手套在70℃、72 h内壁不粘连。  相似文献   

5.
Two model isocyanate terminated resins were synthesized by addition of perfluorocopolyether oligomers (n ca. 1 000) with cyclic polyisocyanurates of hexamethylene diisocyanate (HDI) and isophorone diisocyanate (IPDI). The resins were characterized by chemical titration, gel permeation chromatography, FT‐IR spectroscopy, and viscosity. The two resins, and some blends of them, were crosslinked through urea bond formation by exposure to atmospheric moisture. The resulting coatings were characterized by dynamic mechanical spectroscopy (DMS), tensile properties, abrasion resistance, adhesion, atomic force microscopy (AFM) and contact angle measurements. Phase separation phenomena and mechanical properties were related to composition and thermal transitions of both hard and soft phase. Adhesion (pull‐off) was poor on inorganic surfaces like glass and aluminium (<1 MPa) and good on organic primers (>5 MPa). The use of organosilane adhesion promoters was successfully investigated. Surface analysis by AFM showed the formation of a chemically heterogeneous very smooth (on a nanoscale) surface. Contact angle determinations with water, diiodomethane and hexadecane were carried out. The total surface energy of coatings was calculated by the harmonic mean approximation and resulted typically low (16.0–17.5 mN/m) and unaffected by the coating bulk composition.  相似文献   

6.
颜财彬  傅和青  陈焕钦 《化工学报》2012,63(7):2258-2265
采用预聚体分散法制备了一系列固含量为50%的水性聚氨酯(WPU),并通过傅里叶红外光谱(FT-IR)、粒径分析仪、X射线衍射(XRD)、差示扫描量热分析(DSC)、拉力试验机等仪器进行表征,研究了HDI/IPDI摩尔比对WPU的乳液性能和胶膜结晶性能、力学性能、耐水性能,以及基材EVA/PVC粘接性能的影响,分析了不同摩尔比的HDI/IPDI和粘接时间与WPU胶黏剂对EVA/PVC粘接性能的关系。研究发现,随着HDI/IPDI摩尔比增加,水性聚氨酯的乳液性能、软硬段的结晶性都得到提高,而胶膜拉伸强度呈先增大后减小的趋势,断裂伸长率则先减小后增大。所有WPU胶膜都有很好耐水性,胶膜吸水率都在5.0%(质量)以下。粘接实验结果表明,WPU胶黏剂对EVA/PVC具有优异的粘接性能,24 h后可对基材产生界面破坏,随着HDI/IPDI摩尔比增加,胶黏剂的粘接强度增大。当HDI/IPDI=7∶1时,水性聚氨酯的综合性能最好。  相似文献   

7.
The early detection of bacterial attachment is very crucial in the prevention of biofilm growth because fully established biofilms are extremely resistant to chemical or physical treatments. The cyclic voltammentry was employed to differentially monitor bacterial attachment and biofilm formation on electrodes in this study. In addition, the mathematical estimation of the surface coverage from the cyclic voltammogram was tried and it was found that the estimation had a linear relationship with the actual coverage of the electrode, validating the potential of cyclic voltammetry for getting the quantitative information about the degree of the bacterial attachment on the surface.  相似文献   

8.
Functionality of polymeric coating, especially in terms of anti-corrosive properties and stability, can be negatively influenced by formation of either bacterial or fungal biofilm on its surface. Herein, the epoxy-ester resin based polymeric coating was filled with pigments (natural silicon dioxide diatomite, natural wollastonite, tungstate and molybdate). Pigments was modified by conducting polymers (polyaniline phosphate, polypyrrole phosphate, poly(p-phenylenediamine) phosphate and ZnFe2O4). Impact of modified pigments on the surface energy and formation of biofilm were tested. The use of various biofilm forming species of both the bacteria and fungi filled a knowledge gap about their behavior on polymeric coatings.  相似文献   

9.
UV-curable polyurethane acrylates for poly(vinyl chloride) (PVC) floor coating were prepared using nonyellowing polyisocyanates. The effects of the chemical structure of the polyisocyanates and hydroxyacrylates, and the compositions of the prepolymer/diluent on the properties of the UV-curable polyurethane acrylates were investigated. Several different urethane acrylate prepolymers from four different polyisocyanates, isophorone diisocyanate (IPDI) adduct, hexamethylene diisocyanate (HDI) adduct, HDI biuret, and HDI isocyanurate, and two different hydroxyacrylates, hydroxyapropyl acrylate (HPA), polycaprolactone modified hydroxyethylhexylacrylate (PCMHEA). UV-curable coating materials were formulated from the prepolymers and 1-hydroxycyclohexylphenyl ketone as a photoinitiator with polyethylene glycol diacrylate (PEGDA) as a diluent. The polyurethane acrylates prepared with HDI isocyanurate and the equimolar mixture of HPA and PCMHEA showed balanced coating properties such as tensile properties, hardness, weatherability, and good adhesion. The dynamic mechanical studies showed the properties of those polyurethane acrylates were well correlated with their glass transition temperature behaviors. It was also found that the adhesion was best as a PVC floor coating with the appropriate viscosity (below 150 P at 25°C) when 35% PEGDA as a diluent was used. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
Three bio‐based thiols were synthesized via the thermal thiol‐ene reactions between sucrose soya ester (SSE) and multifunctional thiols; then, thiourethane coatings were produced from these thiols and their coating properties were studied. A series of high bio‐renewable content thiol oligomers were synthesized according to the previously reported thermal thiol‐ene reaction. Fourier transform infrared spectra (FTIR) confirmed the complete consumption of the double bonds in SSE, and gel permeation chromatography confirmed the formation of high‐molecular‐weight oligomers. The viscosity of these oligomers remained low due to their compact and branched structures. Thermoset thiourethane coatings were prepared from these thiol oligomers and polyisocyanate trimer resins with dibutyltin diacetate as the catalyst. FTIR spectra confirmed the formation of the thiourethane group. However, coatings based on isophorone diisocyanate (IPDI) polyisocyanate resin showed a lower degree of cure because of the decreased resin mobility due to the rigid cyclohexane ring. Generally, all the coatings showed good adhesion to aluminum panels, and had high gloss. However, they exhibited low tensile strength, modulus and chemical resistance due to the flexibility of the fatty acid chain. Coatings based on more rigid IPDI‐based polyisocyanate showed higher Tg, hardness and direct impact resistance compared with the hexamethylene‐diisocyanate (HDI) based polyisocyanate counterparts. Thermogravimetric analysis results showed that coatings based on mercaptanized soybean oil have better thermal stability than those from di‐pentene dimercaptan or glycol di‐3‐mercaptopropionate. Two Tg values were found by both differential scanning calorimetry and dynamic mechanical thermal analysis of thiourethanes from HDI‐based polyisocyanate and di‐pentene dimercaptan or glycol di‐3‐mercaptopropionate based oligomers due to phase separation resulting from the poor compatibility between HDI‐based polyisocyanate and the respective oligomers. Copyright © 2011 Society of Chemical Industry  相似文献   

11.
Following a prepolymer mixing process, polyurethane (PU) anionomer dispersions were prepared from polyethylene adipate glycol (PEA), isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI) and dimethylol propionic acid (DMPA) as a potential ionic centre. Effects of prepolymer molecular weight, PEA molecular weight, hard segment content, DMPA content, degree of neutralization and mixed diisocyanates have been studied in terms of particle size and viscosity of emulsion, and surface, mechanical and dynamic mechanical properties of the emulsion-cast films. Particle size decreased and emulsion viscosity increased with increase in prepolymer molecular weight and PEA molecular weight, DMPA content, the degree of neutralization and IPDI content in mixed isocyanate systems. The decrease in particle size was due to increased chain flexibility and/or hydrophilicity of the PU. The mechanical and dynamic mechanical properties of the PU ionomer dispersions were interpreted in terms of soft segment–hard segment phase separations, hard segment content, chain flexibility and coulombic forces. © of SCI.  相似文献   

12.
Two methods are described for the determination of the ratio of the rate constants γ = k1/k2 of urethane formation from diisocyanates containing two NCO-groups of different reactivity. When the reaction of 1,6-hexamethylene diisocyanate (HDI) or 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate (IPDI) with n-butanol is carried out in the presence of a large excess of n-butanol, the consumption of the two NCO-groups follows first order kinetics. Therefore, γ can be determined by measuring the NCO-consumption. γ equals 1.0 for HDI and 5.1–4.4 for IPDI (temperature range 40–65°C). For the reaction of an excess of diisocyanate (DI) with a macrodiol, e.g. poly(tetramethyleneoxid), γ can be estimated after determination of NCO- and DI-consumption, provided that for γ ≠ 1 the reaction is of first order with respect to both types of NCO-groups. In this case, product composition, X?n, one- and two-sided bound DI-units as well as type of terminal NCO-groups of the NCO-prepolymer can be calculated if the numerical value of γ is known. At 110°C the following values were found for γ: 1.0 for HDI and 4 – 5 for IPDI.  相似文献   

13.
Hydroxyl-terminated polyesters are the most common polyols that are crosslinked through an isocyanate group. In this study, the polyester polyol resins were synthesized by using 1,4-cyclohexanedimethanol (1,4-CHDM) with the mixture of different diacids as 1,3-cyclohexanedicarboxylicacid (1,3-CHDA), 1,4-cyclohexanedicarboxylicacid (1,4-CHDA), isophthalic acid (IPA), adipic acid (AA), and azelaic acid (AZA). The solubility and viscosity of these polyester polyol resins were determined by using suitable solvent. All the polyester polyols were crosslinked with HDI isocyanurate and IPDI trimer to form polyurethane coating films. These films were evaluated for their mechanical, thermal, and chemical resistance properties. The studies on film characteristics reveal that the cycloaliphatic diacids afforded polyurethane with greater performance properties than that of aromatic and linear aliphatic diacids.  相似文献   

14.
Bio‐based polyurethanes (PU) containing poly(ε‐caprolactone) diol (PCL) and hydroxyl telechelic natural rubber (HTNR) were synthesized. The effect of the diisocyanate structure and the molecular weights of diols on the mechanical properties of PU were investigated. Three different molecular structures of diisocyanate were employed: an aliphatic diisocyanate (hexamethylene diisocyanate, HDI), an aromatic diisocyanate (toluene‐2,4‐diisocyanate, TDI) and a cycloalkane diisocyanate (isophorone diisocyanate, IPDI). Two molecular weights of each diol were selected. When HDI was employed, a crystalline PU was generated while asymmetrical structures of TDI and IPDI provided an amorphous PU. The presence of crystalline domains was responsible of a change in tensile behavior and physical properties. PU containing TDI and IPDI showed a rubber‐like behavior: low Young's modulus and high elongation at break. The crystalline domains in PU containing HDI acted as physical crosslinks, enhancing the Young's modulus and reducing the elongation at break, and they are responsible of the plastic yielding. The crystallinity increased the tear strength, the hardness and the thermal stability of PU. There was no significant difference between the TDI and IPDI on the mechanical properties and the physical characteristics. Higher molecular weight of PCL diol changed tensile behavior from the rubber‐like materials to the plastic yielding. Thermal and dynamic mechanical properties were determined by using DSC, TGA and DMTA. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

15.
Polyurethane (PU) anionomers were prepared as aqueous dispersions using dimethylol propionic acid (DMPA) as the stabilizing moiety. The principal diols used were polytetrahydrofuran of molecular weight 1000 (PTHF1000) and cyclohexane dimethanol (CHDM). The diisocyanates used in this study were isophorone diisocyanate (IPDI), hydrogenated methylene bisphenylene diisocyanate (H12MDI), tetramethylene xylene diisocyanate (TMXDI), hexamethylene diisocyanate (HDI), and a 50 : 50 blend of IPDI and HDI. All these samples were neutralized using triethylamine (TEA) and chain-extended using hydrazine monohydrate. The dispersions were prepared at a NCO/OH ratio of 2 so that a comparison of their structure–property relationships could be made with respect to their mechanical and viscoelastic properties and solvent resistance. Also, two further samples were prepared of similar composition to the IPDI-based sample, but using poly (propylene glycol), PPG1000, and PTHF2000 polyols. The effects on the structure and properties of the PPG1000 and the higher molecular weight PTHF sample were compared with the PTHF1000 sample. Dynamic mechanical thermal analysis, tensile testing, solvent spot, and swelling studies were employed for the characterization of these materials. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 2035–2044, 1997  相似文献   

16.
Typically blocked isocyanate systems are used to obtain the performance of two component polyurethane (PU) system in a one-component mixture. In this study four types of isocyanates namely, hexamethylene diisocyanate (HDI), diphenylmethane diisocyanate (MDI), isophorone diisocyanate (IPDI) and toluene diisocyanate (TDI) were blocked with diethylene glycol monobutyl ether (DEGMBE). Elimination of the isocyanate groups and the formation of urethane bonds were studied by FTIR spectroscopy and titration methods. Thermal dissociation of blocked diisocyanates was analyzed by DSC and TGA techniques.Deblocking temperature obtained by DSC and TGA techniques was compared. Based on DSC data, it was found that deblocking of blocked MDI and TDI starts at lower temperatures compared to that of the aliphatic one (HDI). Reactivity of the blocked IPDI is between blocked MDI and blocked TDI.In general, TGA results show the same trend as DSC except for IPDI which shows the lowest deblocking temperature. Deblocking temperature values obtained by TGA technique were lower than DSC values.  相似文献   

17.
The electrooxidation behavior of thiophene and 3‐methylthiophene on a Pt surface in an acetonitrile + tetrabutylammonium tetrafluoroborate solution were investigated. The electropolymerization of these monomers was studied in neutral, acidic, and basic media. The effects of thiophene concentration and the added acid were elucidated. The polythiophene and poly(3‐methylthiophene) films formed were characterized by their cyclic voltammograms in a blank solution and dry conductivities were measured. Electrochemical properties of these polymers in the same medium were investigated in the absence and in the presence of added anhydrous acid and base. The behavior of the freshly prepared films was compared with that which lost its electroactivity as a result of electrooxidation using cyclic voltammetry, controlled potential coulometry, and FTIR spectroscopy. The mechanisms related to the formation of the polymers and their electroactivity loss were proposed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 312–322, 2000  相似文献   

18.
Biofilms are formed on surfaces inside the oral cavity covered by the acquired pellicle and develop into a complex, dynamic, microbial environment. Oral biofilm is a causative factor of dental and periodontal diseases. Accordingly, novel materials that can resist biofilm formation have attracted significant attention. Zwitterionic polymers (ZPs) have unique features that resist protein adhesion and prevent biofilm formation while maintaining biocompatibility. Recent literature has reflected a rapid increase in the application of ZPs as coatings and additives with promising outcomes. In this review, we briefly introduce ZPs and their mechanism of antifouling action, properties of human oral biofilms, and present trends in anti-biofouling, zwitterionic, dental materials. Furthermore, we highlight the existing challenges in the standardization of biofilm research and the future of antifouling, zwitterated, dental materials.  相似文献   

19.
以脂肪族异氰酸酯[异佛尔酮二异氰酸酯(IPDI)、六次甲基二异氰酸酯(HDI)]、聚醚(N-220)为主要原料,通过丙酮法合成了水性聚氨酯(WPU)分散体。探讨了n(IPDI中-NCO):n(HDI中-NCO)比例、后扩链剂用量和交联度等对WPU胶膜力学性能和耐溶剂(水和乙醇)性能的影响。结果表明:随着n(IPDI中-NCO):n(HDI中-NCO)比例的增加,WPU胶膜的拉伸强度提高,断裂伸长率、耐水性和耐乙醇性均下降;当n(IPDI中-NCO):n(HDI中-NCO)=0.25:1时,WPU胶膜的吸水率只有6%;随着后扩链剂用量或交联度的增加,WPU胶膜的拉伸强度提高、断裂伸长率下降。  相似文献   

20.
Natural castor oil based 2-package waterborne polyurethane wood coatings   总被引:1,自引:0,他引:1  
The effects of four kinds of hardener on the properties of castor oil (CO) based 2-package waterborne polyurethane (2K-WPU) wood coatings were examined. Modified castor oil (MCO) was prepared by transesterification of glycerol and CO at the molar ratio of 2.0. The waterborne polyurethane-dispersed polyol (PUDp), one component of the 2K-WPU, was synthesized from MCO, dimethylol propionic acid (DMPA) and isophorone diisocyanate (IPDI) by the acetone process to provide a prepolymer with a carboxyl and hydroxyl groups. Then the prepolymer was neutralized by triethylamine (TEA) and dispersed into water. After vacuum distillation to remove acetone, the PUDp was obtained and then mixed with four different hardeners: IPDI, hexamethylene diisocyanate (HDI), polyethylene glycol (PEG) modified PIPDI (polymeric IPDI) and PEG-modified PHDI (polymeric HDI). The NCO/OH molar ratio of 1.5 was used and a 2K-WPU coating was obtained. The results showed that the film of the 2K-WPU coatings obtained from IPDI hardener had excellent gloss and hardness. On the contrary, the film containing PEG-modified PIPDI hardener (PEG-PIPDI) had lower hardness and gloss but higher tensile strength. The film containing PEG-modified PHDI hardener (PEG-PHDI) showed the best elongation at break, abrasion resistance and impact resistance, though it had the worst hardness. The film with HDI hardener had the best hardness and highest tensile strength and superior water resistance among all the films with different hardeners, and it was suitable for wood coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号