首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
In this study polypropylene/ethylene-propylene rubber (PP/EPR) and different amounts of partially reduced graphene oxide (prGO) and its derivatives were investigated. The nanocomposites were also compatibilized with EPR containing diethyl maleate (DEM), glycidyl methacrylate (GMA) and maleic anhydride (MAH) functionality as a means of controlling their ultimate mechanical behaviour and their structural morphology. Mechanical tests show that the addition of pristine prGO to PP/EPR blend promotes tensile strength and Young’s modulus, while reducing elongation at break and impact strength. A significant improvement of these properties was achieved by the presence of functionalized prGO and EPR-g-DEM. TGA analysis showed that the nanocomposites exhibit a higher thermal stability than that of the matrix alone. XRD analysis revealed that the polymer chains have been successfully intercalated into prGO layers. SEM has been used to verify the dispersion of the prGO particles in the matrix and to reveal the developed morphology of PP/EPR, in the presence of compatibilizers and functionalized prGO.  相似文献   

2.
Polypropylene/Polybutene-1 (PP/PB-1) blends and nanocomposites containing pristine partially reduced graphene oxide (rGO) and chemically functionalized rGO (FrGO) with silane, and silane grafted with 1,12-dodecanediamine and 1,12-dodecanediol were studied. The effects of the chemical treatments on structure and thermal stability of rGO were first thoroughly investigated. Attenuated total reflectance Fourier infrared (ATR-FTIR) spectroscopy analyses of FrGO evidenced the existence of functional groups on rGO after each chemical treatment, while X-ray diffraction (XRD) results confirmed the effectiveness of the interlayer grafting process through shifting of the basal spacings as witnessed by increased d002 values. Furthermore, thermogravimetric analysis (TGA) revealed that the functionalization of rGO resulted in improved thermal stability of rGO demonstrated by its increased thermal degradation temperature. The PP/PB-1 blends and their rGO and FrGO based nanocomposites were prepared by melt blending masterbatch process in the presence of an acrylic acid modified polypropylene compatibilizer (PP-g-AA). Mechanical testing showed that Young’s modulus and tensile strength of the PP/PB-1 blends significantly improved after co-addition of FrGO and PP-g-AA to form the nanocomposites, but it also endowed a drastic decrease in their elongation at break and especially in their impact strength. XRD analyses attested the successful formation of intercalated nanocomposites, and scanning electron microscopy (SEM) examinations disclosed a two-phase morphology consisting of PB-1 dispersed droplets in the PP matrix. SEM also indicated that the incorporation of PP-g-AA into the blends and the nanocomposites contributed to enhanced adhesion and dispersion of PB-1 phase and FrGO nanoparticles within the polymer matrix.  相似文献   

3.
In this study, Ca2+‐montmorillonite (Ca2+‐MMT) and organo‐montmorillonite (OMMT) were modified by three compatibilizers with different degrees of polarity [poly(ethylene glycol) (PEG), alkyl‐PEG, and polypropylene (PP)‐g‐PEG]. PP/MMT nanocomposites were prepared by melt blending and characterized using X‐ray diffraction and transmission electron microscopy. The results showed the degree of dispersion of OMMT in the PP/PP‐g‐PEG/OMMT (PMOM) nanocomposite was considerably higher than those in the PP/PEG/OMMT and PP/alkyl‐PEG/OMMT nanocomposites, which indicated that the dispersion was relative to the compatibility between modified OMMT and PP matrix. Linear viscoelasticity of PP/MMT nanocomposites in melt states was investigated by small amplitude dynamic rheology measurements. With the addition of the modified MMT, the shear viscosities and storage modulus of all the PP/MMT nanocomposites decreased. It can be attributed to the plasticization effect of PEG segments in the three modifiers. This rheological behavior was different from most surfactant modified MMT nanocomposites which typically showed an increase in dynamic modulus and viscosity relative to the polymer matrix. The unusual rheological observations were explained in terms of the compatibility between the polymer matrix and MMT. In addition, the mechanical properties of PP/MMT nanocomposites were improved. A simultaneous increase in the tensile strength and toughness was observed in PP/PMOM nanocomposites. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
Lili Cui 《Polymer》2007,48(6):1632-1640
The compatibilization effects provided by amine functionalized polypropylenes versus those of a maleated polypropylene, PP-g-MA, for forming polypropylene-based nanocomposites were compared. Amine functionalized polypropylenes were prepared by reaction of maleated polypropylene, PP-g-MA, with 1,12-diaminododecane in the melt to form PP-g-NH2 which was subsequently protonated to form PP-g-NH3+. Nanocomposites were prepared by melt processing using a DSM microcompounder (residence time of 10 min) by blending polypropylene and these functionalized materials with sodium montmorillonite, Na-MMT, and with an organoclay. X-ray and transmission electron microscopy plus tensile modulus tests were used to characterize those nanocomposites. Composites based on Na-MMT as the filler showed almost no improvement of tensile modulus compared to the polymer matrix using any of these functionalized polypropylenes, which indicated that almost no exfoliation was achieved. All the compatibilized nanocomposites using an organoclay, based on quaternary ammonium surfactant modified MMT, as the filler had better clay exfoliation compared to the uncompatibilized PP nanocomposites. Binary and ternary nanocomposites using amine functionalized polypropylenes had good clay exfoliation, but no advantage over those using PP-g-MA. The PP-g-MA/organoclay and PP/PP-g-MA/organoclay nanocomposites showed the most substantial improvements in terms of both mechanical properties and clay exfoliation.  相似文献   

5.
Direct melt compounding was used to prepare nanocomposites of organophilic montmorillonite (o‐mmt) clay dispersed in maleated polypropylenes (PPgMA) as well as nanocomposites of organoclay and polypropylene (PP) modified with various grades of PPgMA compatibilizers. The thermal effect on the rheology and melt compounding was first investigated with a plasticorder. The shear viscosities and the melt flow indices (MFI) of the PPgMA compatibilizers were sensitive to the blending temperature, which had to be varied with the compatibilizer grade to achieve desirable level of torque for extensive exfoliation of organoclay in the plasticorder. However, for low molecular weight oligomer, the clay dispersion was poor because of low shear viscosity and thermal instability. Next, the PPgMA‐modified PP/organoclay nanocomposites were prepared on a corotating twin‐screw extruder. The nanoscale dimensions of the dispersed clay platelets led to significantly increased linear viscoelastic properties, which were qualitatively correlated with the state of exfoliation in the nanocomposites. The relative viscosity (relative to the silicate‐free matrix) curves revealed a systematic trend with the extent of clay exfoliation. Furthermore, the degree of clay dispersion was found to increase with the loading of compatibilizers; however, high loading of compatibilizer compromised the final moduli of the nanocomposites. POLYM. ENG. SCI. 46:289–302, 2006. © 2006 Society of Plastics Engineers  相似文献   

6.
The effect of irradiation on thermal and mechanical properties of high density polyethylene (HDPE) and polypropylene (PP)/clay nanocomposites in the presence of polyethylene glycol (PEG) and polypropylene glycol (PPG) for enhancing the clay dispersion into the polymer matrices is considered. The morphology studies show that clay layers satisfactorily expand in the presence of compatibilizers. The irradiation improves the mechanical properties of HDPE nanocomposites at 500 kGy, but it decreases the tensile strength of PP nanocomposites. The addition of PEG markedly ameliorates the mechanical properties of HDPE nanocomposites at 500 kGy, while this improvement is not deduced for PP nanocomposites. The thermogravimetric analysis data show that the irradiation increases the thermal stability of HDPE nanocomposites at the clay content of 5 wt% with and without compatibilizer. The thermal stability of PP nanocomposites descends with the irradiation dose, and the presence of PPG into the PP matrix intensifies this reduction. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

7.
In this article, we describe the fabrication by melt mixing of graphene‐polypropylene nanocomposites and present the effect of graphene addition on some selected properties of polypropylene (PP). The graphene nanosheets (GNs) used as nano‐reinforcing agents were obtained through chemical reduction of graphene oxide by hydrazine hydrate. GNs were characterized and successfully dispersed into PP matrix to produce PP/GNs nanocomposites. The effects of GNs content on thermal, mechanical, and rheological properties were reported, and the obtained results were discussed in terms of morphology and state of dispersion and distribution of the GNs within the polymer matrix. Characterization by scanning electron microscopy and X‐ray diffraction of the nanocomposites has shown a relatively good dispersion of GNs in the polymer matrix, with the presence of only few aggregates. Increasing GNs content resulted in a significant increase in both mechanical and thermal properties with only few percent of GNs loading. Rheological behavior of the PP/GNs nanocomposites showed a Maxwellian‐like behavior for low GNs concentrations and a viscoelastic solid‐like behavior for GNs content exceeding the concentration of the percolation threshold. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

8.
In polymeric materials combining desirable properties, compatibility between constituent components of incompatible blends is necessary. The influence of two types of blend compatibilizers, a graft copolymer of maleic anhydride and polypropylene (PP) and phenolic‐modified PP, on the rheological, mechanical, and morphological properties of epoxidized natural rubber/PP thermoplastic vulcanizates was investigated at varied concentrations. All properties improved in a range of loading levels of compatibilizers at 0–7.5 wt % of PP. This was attributed to a chemical interaction between the different phases caused by the functionalized compatibilizers. Increasing chemical interaction between interfaces improved the interfacial tension and led to a microscale size of the dispersion. A decreasing trend in the properties was observed at compatibilizer levels higher than 7.5 wt % of PP because of segregation, which led to a third blend component dispersed in the PP matrix. The compatibilizers behaved as lubricants in the polymer melt flow. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
Maleic anhydride grafted polypropylene (PP‐g‐MA) and organically modified clay composites were prepared in a plasticorder. PP‐g‐MAs, including Polybond PB3150, Polybond PB3200, Polybond PB3000, and Epolene E43, with a wide range of maleic anhydride (MA) concentrations and molecular weights were used. The structure was investigated with X‐ray diffraction (XRD) and transmission electron microscopy (TEM). PP‐g‐MA compatibilizers gave rise to similar degrees of dispersion beyond the weight ratio of 3/1, with the exception of E43, which had the highest MA content and the lowest molecular weight. The thermal instability and high melt index were responsible for the ineffective modification by E43. Furthermore, PP‐g‐MA with a lower molecular weight and a higher melt index had to be compounded at a lower mixing temperature to achieve a reasonable level of torque for clay dispersion. Polypropylene/organoclay nanocomposites were then modified with different levels of PP‐g‐MA compatibilizers with a twin‐screw extruder. The polypropylene/E43/clay system, as shown by XRD patterns and TEM observations, yielded the poorest clay dispersion of the compatibilizers under investigation. The curves of the relative complex viscosity also revealed a systematic trend with the extent of exfoliation and showed promise for quantifying the hybrid structure of the nanocomposites. The mechanical properties and thermal stability were determined by dynamical mechanical analysis and thermogravimetric analysis, respectively. Although PP‐g‐MA with a lower molecular weight led to better clay dispersion in the polypropylene nanocomposites, it caused deterioration in both the mechanical and thermal properties of the hybrid systems. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1667–1680, 2005  相似文献   

10.
Natural fiber‐reinforced nanocomposites based on polypropylene/nanoclay/banana fibers were fabricated by melt mixing in a twin‐screw extruder followed by compression molding in this current study. Maleic anhydride polypropylene copolymer (MA‐g‐PP) was used as a compatibilizer to increase the compatibility between the PP matrix, clay, and banana fiber to enhance exfoliation of organoclay and dispersion of fibers into the polymer matrix. Variation in mechanical, thermal, and physico‐mechanical properties with the addition of banana fiber into the PP nanocomposites was investigated. It was observed that 3 wt% of nanoclay and 5 wt% of MA‐g‐PP within PP matrix resulted in an increase in tensile and flexural strength by 41.3% and 45.6% as compared with virgin PP. Further, incorporation of 30 wt% banana fiber in PP nanocomposites system increases the tensile and flexural strength to the tune of 27.1% and 15.8%, respectively. The morphology of fiber reinforced PP nanocomposites has been examined by using scanning electron microscopy and transmission electron microscopy. Significant enhancement in the thermal stability of nanocomposites was also observed due to the presence of nanoclay under thermogravimetric analysis. Dynamic mechanical analysis tests revealed an increase in storage modulus (E′) and damping factor (tan δ), conforming the strong interaction between nanoclay/banana fiberand MA‐g‐PP in the fiber‐reinforced nanocomposites systems. POLYM. COMPOS., © 2011 Society of Plastics Engineers.  相似文献   

11.
Seung Hwan Lee 《Carbon》2007,45(14):2810-2822
Multi-walled carbon nanotubes (MWCNTs) were chemically functionalized through acid, amine, and heat treatments. These were used in the manufacture of composites using polypropylene (PP) as matrix and two types of compatibilizers, maleic anhydride grafted polypropylene (MA-g-PP) and maleic anhydride grafted styrene-ethylene/butylene-styrene (MA-g-SEBS). PP/MWCNT composites filled with modified MWCNTs and compatibilizers were prepared by melt compounding with a twin-screw extruder and were evaluated to understand the effect of dispersion and interfacial interaction on the morphological, rheological, and electrical properties of the composite. When heat treated MWCNTs and compatibilizers were added to the composite, three dimensional network structures were generated through nanotube-nanotube and nanotube-matrix interactions resulting in percolation. Electrical conductivity was dramatically increased when the heat treated MWCNTs were added to the composite and was increased further with the addition of MA-g-SEBS compatibilizer.  相似文献   

12.
This study describes the reinforcement effect of surface modified mullite fibers on the crystallization, thermal stability, and mechanical properties of polypropylene (PP). The nanocomposites were developed using polypropylene‐grafted‐maleic anhydride (PP‐g‐MA) as compatibilizer with different weight ratios (0.5, 1.0, 1.5, 2.5, 5.0, and 10.0 wt %) of amine functionalized mullite fibers (AMUF) via solution blending method. Chemical grafting of AMUF with PP‐g‐MA resulted in enhanced filler dispersion in the polymer as well as effective filler‐polymer interactions. The dispersion of nanofiller in the polymer matrix was identified using scanning electron microscopy (SEM) elemental mapping and transmission electron microscopy (TEM) analysis. AMUF increased the Young's modulus of PP in the nanocomposites up to a 5 wt % filler content, however, at 10 wt % loading, a decrease in the modulus resulted due to agglomeration of AMUF. The impact strength of PP increased simultaneously with the modulus as a function of AMUF content (up to 5 wt %). The mechanical properties of PP‐AMUF nanocomposites exhibited improved thermal performance as compared to pure PP matrix, thus, confirming the overall potential of the generated composites for a variety of structural applications. The mechanical properties of 5 wt % of AMUF filled PP nanocomposite were also compared with PP nanocomposites generated with unmodified MUF and the results confirmed superior mechanical properties on incorporation of modified filler. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43725.  相似文献   

13.
Small amount of large surface area graphene (G) is expected to significantly alter functional properties of polymers. The property enhancement is a function of degree of exfoliation and dispersion of G as well as its compatibility with base polymer. However, nonpolar nature of polyolefins such as polypropylene (PP) restricts homogeneous dispersion of G, leading to significant agglomeration and properties reduction. In this work, two compatibilizers, poly (ethylene-co-butyl acrylate) (EBA) (new compatibilizer) and PP-grafted-maleic anhydride (MA-PP) (conventional compatibilizer) were compared to enhance the dispersion efficacy of G in PP. The EBA-compatibilized nanocomposites exhibited 44% increase in the Young's modulus compared to 32% increment in MA-PP-compatibilized nanocomposites. Higher elongation at break for EBA-compatibilized nanocomposites is attributed to lower degree of crystallinity in these nanocomposites. On the other hand, EBA-compatibilized nanocomposites showed significantly improved thermal stability compared to MA-PP-compatibilized nanocomposites. The results indicate that EBA may act as a potential compatibilizer for G/PP nanocomposites.  相似文献   

14.
Nanocomposites polypropylene (PP) with 3 and 7 wt % of clay were prepared by melt mixing. Four types of maleic anhydride grafted PP (MAPP) in broad range of MA groups content (0.3–4 wt %) and molecular weights (MW) were used as polar compatibilizers. The effect of the MAPP kind on both the clay dispersion and miscibility with PP was studied. The mixed intercalated/exfoliated morphologies of nanocomposites in the presence of all studied compatibilizers were revealed by XRD and TEM. The oligomer compatibilizer with 4 wt % of MA groups increases the intercalation ability of polymer into clay galleries but this one has limited miscibility with PP and worsens crystalline structure of polymer matrix. The MAPPs with 0.3–1.3% of MA are characterized by the lower intercalation ability but well cocrystallize with PP. Maximum reinforcing effect is attained using high MW MAPP with 0.6% MA and for nanocomposite with 7 wt % (3.8 vol %) of clay it averages almost 1.7 times relative to neat PP and 1.3 times relative to noncompatibilized composite. Dynamic storage moduli of nanocomposites compatibilized by MAPPs with 0.3–1.3% of MA containing 7 wt % of clay increase up to 1.4–1.5 around 30–75°C and over the whole temperature range remain higher compared with both neat PP and uncompatibilized composite. On the contrary, the oligomer MAPP with 4 wt % of MA groups decreases the thermal–mechanical stability of nanocomposite at high temperature compared with both PP and uncompatibilized composites. The study of nanocomposites flammability showed that creating complex composites containing both layered silicate and relatively small amount of magnesium hydroxide can be a successful approach to reduce the combustibility of PP‐based nanocomposites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

15.
BACKGROUND: Polymer/clay (silicate) systems exhibit great promise for industrial applications due to their ability to display synergistically advanced properties with relatively small amounts of clay loads. The effects of various compatibilizers on styrene–ethylene–butylene–styrene block copolymer (SEBS)/clay nanocomposites with various amounts of clay using a melt mixing process are investigated. RESULTS: SEBS/clay nanocomposites were prepared via melt mixing. Two types of maleated compatibilizers, styrene–ethylene–butylene–styrene block copolymer grafted maleic anhydride (SEBS‐g‐MA) and polypropylene grafted maleic anhydride (PP‐g‐MA), were incorporated to improve the dispersion of various amounts of commercial organoclay (denoted as 20A). Experimental samples were analyzed using X‐ray diffraction and transmission electron microscopy. Thermal stability was enhanced through the addition of clay with or without compatibilizers. The dynamic mechanical properties and rheological properties indicated enhanced interaction for the compatibilized nanocomposites. In particular, the PP‐g‐MA compatibilized system conferred higher tensile strength or Young's modulus than the SEBS‐g‐MA compatibilized system, although SEBS‐g‐MA seemed to further expand the interlayer spacing of the clay compared with PP‐g‐MA. CONCLUSION: These unusual results suggest that the matrix properties and compatibilizer types are crucial factors in attaining the best mechanical property performance at a specific clay content. Copyright © 2007 Society of Chemical Industry  相似文献   

16.
New types of compatibilizers based on functionalized polypropylene (PP) were synthesized by radical melt grafting either with monomethyl itaconate or dimethyl itaconate. The effect of these new modified PP compounds were tested as compatibilizers in PP/polyethylene terephthalate (PET) blends. Blends with compositions 15/85 and 30/70 by weight of PP and PET were prepared in a single‐screw extruder. Morphology of the compatibilized blends revealed a very fine and uniform dispersion of the PP phase as compared with that of noncompatibilized blends of the same composition, leading to improved adhesion between the two phases. Whereas dimethyl itaconate derived agent showed less activity, the monomethyl itaconate parent compound showed an increase of the impact resistance of PET in PP/PET blend. This was attributed to the hydrophilic nature of the monomethyl itaconate part of this compatibilizer. The tensile strength of PET in noncompatibilized blends gradually decreases as the PP content increases, while blends containing functionalized PP exhibited higher values.  相似文献   

17.
Polypropylene (PP)/polyamide blends were compatibilized with PP modified with vinylsilane or maleic anhydride and ethylene–propylene random (EPR) copolymer modified with maleic anhydride. The thermal behavior, mechanical properties, and morphology of the blends were investigated. Thermal analysis showed that the polyamide crystallization temperatures shifted downward with all compatibilizers, whereas its melting behavior did not change. On the other hand, polypropylene crystallization temperatures shifted upward in all cases, except for blends containing EPR modified with maleic anhydride. Tensile strength and elongation at break increased for blends compatibilized with modified PP. Blends containing up to 7% of EPR modified with maleic anhydride did not show good yield stresses. The morphology of the blends showed a finer dispersion of the polyamide minor phase in the PP matrix. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2492–2498, 2003  相似文献   

18.
This study developed a scalable and straightforward adaptation methodology for melt processing of polypropylene (PP) to provide a high degree of exfoliation of multilayer graphene oxide (GO) by using a high-shear mixer. GO was first produced by an improved and eco-friendly electrochemical exfoliation by using an environmentally friendly aqueous methanesulfonic acid (MSA) and a sodium sulfate salt system to minimize the environmental impact. The produced GOs then were melt blended with PP and their mechanical, thermal, and morphological properties were investigated under different GO loadings to attain ideal configuration and increase interfacial interactions between polymer matrix and reinforcer. Comparisons were made by producing different PP composites using two different GO types produced in salt and acid environments. Additionally, by applying different voltages to salt system, the effect of applied voltage on the properties of both GO material and the composites were discussed. The characterization results indicated that GO obtained in MSA solution caused a 71% increase in flexural modulus and 46% in flexural strength with the addition of 1 wt% GO. The rheological characterization also showed that dispersion and viscosity improved with lower GO loadings compared to neat polymer by providing cost-effective and scalable graphene manufacturing.  相似文献   

19.
Polypropylene/ethylene-propylene rubber/nanosilica (PP/EPR/nano-SiO2) composites were prepared by a melt blending masterbatch process using a Brabender mixer. In order to improve the interfacial adhesion and achieve diverse desired properties of the composites, nanosilica surface silylation by means of two silane coupling agents: N-(β-aminoethyl)-γ-aminopropyltrimethoxysilane (AEAPTMS) and 3-methacryloxypropyltrimethoxysilane (MPTMS) was explored. The composites were also compatibilized using three compatibilizers: methyl methacrylate grafted PP (MMA-g-PP), glycidylmethacrylate grafted PP (GMA-g-PP) and maleic anhydride grafted PP (MAH-g-PP). The properties of the blends and the composites were examined using tensile and Izod impact tests, differential scanning calorimetry (DSC), thermogravimetric analysis (ATG) and scanning electron microscopy (SEM). According to the mechanical property evaluations, the incorporation of nano-SiO2 particles into PP/EPR blend improved the tensile strength and Young’s modulus of the composites. The elongation and Izod impact strength were adversely affected. A significant improvement in the mechanical properties was obtained for the composites with AEAPTMS-SiO2 and MAH-g-PP. The DSC results indicated that the incorporation of the modified silica and MAH-g-PP increased the crystallinity of the composites. However, no significant variation in the crystallinity was observed as a result of the addition of MMA-g-PP and GMA-g-PP. The TGA results revealed that the composites exhibit a higher thermal stability than that of the neat matrix. SEM micrographs of the fractured surfaces revealed a two-phase morphology with EPR nodules being dispersed in the PP matrix. SEM also indicated that the incorporation of MAH-g-PP into PP/EPR composites contributes to a better dispersion of the EPR phase and nano-SiO2 particles in the polymer matrix.  相似文献   

20.
Carbon nanotubes (CNTs) have been dispersed within polypropylene with the purpose to prepare electromagnetic interference (EMI) absorbers. In order to limit the reflectivity of the electromagnetic waves at the interface of the materials while achieving good absorbing properties, the CNTs concentration must be kept low (<3 wt%) which means that a perfect dispersion must be ensured. Since CNTs do not disperse well within apolar polymer matrices such as polypropylene, two compatibilizers bearing aromatic moieties, i.e. pyrene and pyridine, able to develop π-π interactions with the CNTs have been synthesized starting from polypropylene grafted by maleic anhydride (PP-g-MA). A masterbatch is first prepared by dispersion of CNTs within the compatibilizers by melt-mixing and coprecipitation followed by further dispersion within the PP matrix. Rheological and electromagnetic characterizations of the nanocomposites have demonstrated the efficiency of these compatibilizers to promote the dispersion of CNTs in PP and the good EMI shielding effectiveness of the PP matrix at a low CNTs concentration (2 wt%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号