首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ceramide has been proposed as a second messenger molecule implicated in a variety of biological processes. It has recently been reported that ceramide activates stress-activated protein kinase (SAPK, also known as c-Jun NH2-terminal kinase JNK), a subfamily member of mitogen-activated protein kinase superfamily molecules and that the ceramide/SAPK/JNK signaling pathway is required for stress-induced apoptosis. However, the molecular mechanism by which ceramide induces SAPK/JNK activation is unknown. Here we show that TAK1, a member of the mitogen-activated protein kinase kinase kinase family, is activated by treatment of cells with agents and stresses that induce an increase in ceramide. Ceramide itself stimulated the kinase activity of TAK1. Expression of a constitutively active form of TAK1 resulted in activation of SAPK/JNK and SEK1/MKK4, a direct activator of SAPK/JNK. Furthermore, expression of a kinase-negative form of TAK1 interfered with the activation of SAPK/JNK induced by ceramide. These results indicate that TAK1 may function as a mediator of ceramide signaling to SAPK/JNK activation.  相似文献   

2.
The essential cellular functions associated with microtubules have led to a wide use of microtubule-interfering agents in cancer chemotherapy with promising results. Although the most well studied action of microtubule-interfering agents is an arrest of cells at the G2/M phase of the cell cycle, other effects may also exist. We have observed that paclitaxel (Taxol), docetaxel (Taxotere), vinblastine, vincristine, nocodazole, and colchicine activate the c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) signaling pathway in a variety of human cells. Activation of JNK/SAPK by microtubule-interfering agents is dose-dependent and time-dependent and requires interactions with microtubules. Functional activation of the JNKK/SEK1-JNK/SAPK-c-Jun cascade (where JNKK/SEK1 is JNK kinase/SAPK kinase) was demonstrated by activation of a 12-O-tetradecanoylphorbol-13-acetate response element (TRE) reporter construct in a c-Jun dependent fashion. Microtubule-interfering agents also activated both Ras and apoptosis signal-regulating kinase (ASK1) and coexpression of dominant negative Ras and dominant negative apoptosis signal-regulating kinase exerted individual and additive inhibition of JNK/SAPK activation by microtubule-interfering agents. These findings suggest that multiple signal transduction pathways are involved with cellular detection of microtubular disarray and subsequent activation of JNK/SAPK.  相似文献   

3.
Nitric oxide is a signaling molecule that has a broad range of physiological functions, including neurotransmission, macrophage activation, and vasodilation. The mechanism by which nitric oxide regulates signal transduction mediating diverse biological activities is not fully understood, however. Here, we demonstrate that nitric oxide induced the stimulation of c-Jun NH2-terminal kinase (JNK)/stress-activated protein kinase (SAPK) in intact cells. Exposure of cultured HEK293 cells to sodium nitroprusside, a nitric oxide releasing agent, resulted in the stimulation of JNK1 activity. The sodium nitroprusside-induced stimulation of JNK1 activity was abolished by treatment of cells with N-acetylcysteine. Nitric oxide production from HEK293 cells ectopically expressing nitric oxide synthases resulted in the stimulation of JNK1 activity, while JNK1 stimulation in nitric oxide synthase-overexpressing cells was abrogated by a nitric oxide synthase inhibitor, NG-nitro-L-arginine. Furthermore, exposure of cells to sodium nitroprusside resulted in the stimulation of JNK kinase (JNKK1/SEK1). Taken together, our data suggest that nitric oxide modulates the JNK activity through activating JNKK1/SEK1.  相似文献   

4.
We have shown previously that interleukin-4 (IL-4) protects TS1alphabeta cells from apoptosis, but very little is known about the mechanism by which IL-4 exerts this effect. We found that Akt activity, which is dependent on phosphatidylinositol 3 kinase, is reduced in IL-4-deprived TS1alphabeta cells. Overexpression of wild-type Akt or a constitutively active Akt mutant protects cells from IL-4 deprivation-induced apoptosis. Readdition of IL-4 before the commitment point is able to restore Akt activity. We also show expression and c-Jun N-terminal kinase 2 activation after IL-4 deprivation. Overexpression of the constitutively activated Akt mutant in IL-4-deprived cells correlates with inhibition of c-Jun N-terminal kinase 2 activity. Finally, TS1alphabeta survival is independent of Bcl-2, Bcl-x, or Bax.  相似文献   

5.
Sphingolipid ceramide has emerged as a lipid messenger of cell functions including differentiation and apoptosis. Diverse kinds of stresses (ultraviolet, irradiation, heat shock and hypoxia) and biological factors (TNF-alpha, IFN-gamma and Fas antibody) require ceramide generation to execute apoptosis. The review summarises the diversity and complexity of up- and downstream of ceramide signalling in apoptosis and clinical implications of ceramide-induced apoptosis.  相似文献   

6.
In many malignant cells, both the anchorage requirement for survival and the function of the p53 tumor suppressor gene are subverted. These effects are consistent with the hypothesis that survival signals from extracellular matrix (ECM) suppress a p53-regulated cell death pathway. We report that survival signals from fibronectin are transduced by the focal adhesion kinase (FAK). If FAK or the correct ECM is absent, cells enter apoptosis through a p53-dependent pathway activated by protein kinase C lambda/iota and cytosolic phospholipase A2. This pathway is suppressible by dominant-negative p53 and Bcl2 but not CrmA. Upon inactivation of p53, cells survive even if they lack matrix signals or FAK. This is the first report that p53 monitors survival signals from ECM/FAK in anchorage- dependent cells.  相似文献   

7.
Protein kinase Cdelta (PKCdelta) is proteolytically cleaved and activated at the onset of apoptosis induced by DNA-damaging agents, tumor necrosis factor, and anti-Fas antibody. A role for PKCdelta in apoptosis is supported by the finding that overexpression of the catalytic fragment of PKCdelta (PKCdelta CF) in cells is associated with the appearance of certain characteristics of apoptosis. However, the functional relationship between PKCdelta cleavage and induction of apoptosis is unknown. The present studies demonstrate that PKCdelta associates constitutively with the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). The results show that PKCdelta CF phosphorylates DNA-PKcs in vitro. Interaction of DNA-PKcs with PKCdelta CF inhibits the function of DNA-PKcs to form complexes with DNA and to phosphorylate its downstream target, p53. The results also demonstrate that cells deficient in DNA-PK are resistant to apoptosis induced by overexpressing PKCdelta CF. These findings support the hypothesis that functional interactions between PKCdelta and DNA-PK contribute to DNA damage-induced apoptosis.  相似文献   

8.
9.
10.
To address the role of protein kinase C (PKC) in the regulation of ceramide production, we evaluated the impact of the PKC activators 12-O-tetradecanoylphorbol-13-acetate and phosphatidylserine on the apoptotic signaling pathway triggered by the chemotherapeutic drug daunorubicin. Treatment of U937 and HL-60 cells with 0.5-1 microM daunorubicin induced a greater than 30% activation of neutral sphingomyelinase activity within 4-10 min with concomitant sphingomyelin hydrolysis and ceramide generation. Activation of PKC by 12-O-tetradecanoylphorbol-13-acetate and phosphatidylserine inhibited daunorubicin-induced neutral sphingomyelinase activation, sphingomyelin hydrolysis, ceramide generation, and apoptosis. The apoptotic response could be restored by the addition of 25 microM cell-permeant C6-ceramide. In conclusion, PKC emerges as a potentially critical negative regulator of the anthracycline-activated sphingomyelin-ceramide apoptotic pathway.  相似文献   

11.
The Fas receptor is one of a number of important physiological inducers of programmed cell death (apoptosis). Current models for regulation of this process involve rapid conversion of sphingomyelin to ceramide by cellular sphingomyelinases. Induced changes in cellular levels of such sphingosine-based ceramides are normally extrapolated from measurements of sphingomyelinase activity or following their conversion to ceramide phosphate by treatment of cellular lipid extracts with bacterial diacylglycerol kinase (DAGK). To allow direct study of cellular sphingosine- and sphinganine-based ceramide levels, we developed a mass spectrometric technique capable of determining inducible changes in both overall ceramide levels and species distribution in cellular lipid preparations. Contrary to current models, we detected no changes in cellular ceramide levels up to 2 hr poststimulation of Jurkat T cells with an anti-Fas IgM, although this treatment did induce apoptosis. We also determined in the same system that, when utilizing the DAGK assay, increased phosphorylation of substrates that comigrated with ceramide standards was apparent but that this effect was due to an enhancement of DAGK activity rather than increases in levels of cellular ceramides as substrates per se. Thus, the first direct measurement of ceramides present in cells undergoing apoptosis indicates that, insofar as it can be measured, the induction of apoptosis does not involve the generation of sphingosine-based ceramides, contrary to many published accounts.  相似文献   

12.
PKR is an interferon-inducible, double-stranded (ds) RNA-activated serine/threonine protein kinase, and has been shown to play roles in viral pathogenesis, cell growth and apoptosis. We expressed PKR as a fusion protein with enhanced jellyfish green fluorescence protein (EGFP) in human embryonic kidney 293 cells to visualize the effect of PKR transfection. The EGFP-fusion construct with wild-type PKR showed both auto- and substrate-phosphorylation activities independent of dsRNA, indicating EGFP-PKR is constitutively active. The EGFP-construct with a mutant PKR with the first RNA binding domain deleted still possessed kinase activities. On the other hand, the EGFP-fusion with a catalytically inactive mutant of PKR with the substitution of K at 296 with R, which has been shown to have tumorigenic properties, did not possess kinase activities. Transfection of the constitutive active forms of EGFP-PKR constructs induced apoptosis in 293 cells without dsRNA, whereas the EGFP-fusion with the catalytically inactive mutant did not cause apoptosis but rather protected cells from Fas-induced cell death. In addition, Fas-stimulation increased endogenous PKR activities. These results constitute evidence that PKR is sufficient to induce apoptosis, and plays a role in Fas-mediated apoptosis.  相似文献   

13.
To analyze the effects of supraphysiological dosages of growth hormone (GH) on carbohydrate (CH) and lipid metabolism, we investigated 87 girls with Turner syndrome (TS) in two studies: (1) a 4-year GH dose-response (DR) study comparing three groups with stepwise GH dosage increases up to 8 IU/m2/d in girls aged 2 to 11 years, and (2) a 2-year GH administration frequency-response (FR) study in girls aged 11 to 17 years, comparing once-daily (OD) and twice-daily (BID) injections of a total GH dose of 6 IU/m2/d in combination with low-dose ethinyl estradiol (50 ng/kg/d orally). At baseline, impaired glucose tolerance (IGT) was present in 6% of the girls, and at the end of the studies, in 5%. In the DR study, the area under the curve for time-concentration (AUCab) for glucose after an oral glucose tolerance test (OGTT) showed no change over time and no significant difference between any of the study groups. However, in all three DR groups, the AUCab for insulin, fasting glucose, the insulinogenic index, hemoglobin A1c (HbA1c), and urinary C-peptide (uCp) were all significantly higher after 4 years compared with pretreatment (P<.05). In the FR study, group differences were not observed. Compared with healthy Dutch control subjects, the median baseline levels in relatively young girls in the DR study were similar for total cholesterol (TC) and lower for high-density lipoprotein (HDL) cholesterol. In contrast, the median TC levels of relatively older girls in the FR study were higher and HDL levels were similar. With increasing GH dosage in the DR study, median TC and low-density lipoprotein (LDL) levels decreased, whereas median HDL levels increased. The changes after 4 years were significant, including a decrease in the atherogenic index. GH treatment at the supraphysiological dosages used in this study did not increase the frequency of IGT or clinical diabetes. However, we observed an increased insulinogenic index indicative of insulin resistance. Therefore, long-term follow-up study is warranted in these otherwise healthy subjects. OD injection regimens changed the lipid profile toward a more cardioprotective direction with a significant reduction of the TC/HDL cholesterol ratio.  相似文献   

14.
Recently, (glyco)sphingolipids (SL) like ceramide (Cer) and glucosylceramide (GlcCer) have been shown to be involved in signaling pathways leading to differentiation and apoptosis in several cell types, including the colon adenocarcinoma cell line HT29. Intracellular levels of Cer can be modulated by ligands such as interferon-gamma (IFN gamma). In the present study we show that IFN gamma, depending on its concentration, has both differentiation- and apoptosis-inducing effects on HT29 cells. Since both phenomena have been related to SL-mediated signaling in other cell types, we next examined whether IFN gamma was able to induce changes in the SL levels of HT29 cells. Remarkably, no significant changes in these levels could be revealed, implying that SL are not involved in IFN gamma-induced differentiation and/or apoptosis of HT29 cells. This observation provides evidence for the hypothesis that SL-mediated signaling pathways might be more cell type specific than is generally assumed.  相似文献   

15.
We have generated a mouse model for hepatic ischemia in which surgical subcutaneous transposition of the spleen allows hepatic ischemia to be applied without affecting other tissues. Using this mouse model we investigated the relationship between the length of ischemic periods in the liver and subsequent liver function; furthermore, we assayed the activation of c-Jun N-terminal kinase (JNK) during ischemia and reperfusion. Although prior to this study only the activated form of JNK was known to be translocated to the nucleus, we found that JNK translocates to the nucleus during ischemia without activation and is then activated during reperfusion. These results suggest a novel mechanism of JNK activation.  相似文献   

16.
Activation of stress-activated protein kinases, including the p38 and the c-Jun NH2-terminal kinases (JNK), have been associated with the onset of cardiac hypertrophy and cell death in response to hemodynamic overload and ischemia/reperfusion injury. Upon infection of cultured neonatal rat cardiac myocytes with recombinant adenoviral vectors expressing a wild type and a constitutively active mutant of MKK7 (or JNKK2), JNK was specifically activated without affecting other mitogen-activated protein kinases, including extracellular signal-regulated protein kinases and p38. Specific activation of the JNK pathway in cardiac myocytes induced characteristic features of hypertrophy, including an increase in cell size, elevated expression of atrial natriuretic factor, and induction of sarcomere organization. In contrast, co-activation of both JNK (by MKK7) and p38 (by MKK3 or MKK6) in cardiomyocytes led to an induction of cytopathic responses and suppression of hypertrophic responses. These data provide the first direct evidence that activation of JNK alone is sufficient to induce characteristic features of cardiac hypertrophy, thereby supporting an active role for the JNK pathway in the development of cardiac hypertrophy. The cytopathic response, as a result of co-activation of both JNK and p38, may contribute to the loss of contractile function and viability of cardiomyocytes following hemodynamic overload and cardiac ischemia/reperfusion injury.  相似文献   

17.
We recently demonstrated that the engagement of HLA class I alpha1 domain induced Fas-independent apoptosis in human T and B lymphocytes. We analyzed the signaling pathway involved in HLA class I-mediated apoptosis in comparison with Fas (APO-1, CD95)-dependent apoptosis. The mouse mAb90 or the rat YTH862 monoclonal antibodies which bind the human HLA class I alpha1 domain induced the production of ceramide which was blocked by addition of the phosphatidylcholine-dependent phospholipase C inhibitor, D609. Furthermore, HLA class I-mediated apoptosis involved at least two different caspases, an interleukin-1 converting enzyme-like protease and another protease inhibited by the CPP32-like protease inhibitor Ac-DEVD-CHO. Despite similarity between Fas and HLA class I signaling pathways, we failed to demonstrate any physical association between these two molecules. We also report that the pan-caspase inhibitory peptide zVAD-fmk, but not Ac-DEVD-CHO and Ac-YVAD-CHO, inhibited decrease of mitochondrial transmembrane potential and generation of ceramide induced by anti-HLA class I and anti-Fas monoclonal antibodies, whereas all three peptides efficiently inhibited apoptosis. Altogether these results suggest that signaling through Fas and HLA class I involve caspase(s), targeted by zVAD-fmk, which act upstream of ceramide generation and mitochondrial events, whereas interleukin-1 converting enzyme-like and CPP32-like proteases act downstream of the mitochondria.  相似文献   

18.
19.
20.
We investigated the ability of N-octanoyl-sphingosine (C8-Cer) stereoisomers, N-octanoyl-DL-erythro-dihydrosphingosine (DL-e-DHC8-Cer), and a new ceramide derivative, N-octyl-D-erythro-sphingosine (D-e-C8-Ceramine), to induce apoptosis in U937 cells. We found the C8-Cer stereoisomers to be stereospecific with the D- and L-threo stereoisomers being severalfold more potent than the erythro in inducing nucleosomal fragmentation. The order of potency was: D-t-C8-Cer = L-t-C8-Cer > L-e-C8-Cer > D-e-C8-Cer > DL-e-DHC8-Cer. The importance of the carbonyl group in apoptosis was investigated by using a new ceramide derivative, D-e-C8-Ceramine, in which the carbonyl group was replaced by a methylene group. The carbonyl group was not necessary for triggering apoptosis. In fact, replacement of the carbonyl group decreased substantially the time required for cells to die, with maximum DNA fragmentation occurring at 6 h as opposed to the 18 h required by D-e-C8-Cer. To explore possible mechanisms by which these compounds trigger the apoptotic pathway, we tested their ability to increase the endogenous levels of cellular ceramide and to differentially activate a ceramide-activated protein kinase (CAPK). While the potent DNA fragmentation-inducing compounds D-e-C8-Ceramine and L-t-C8-Cer failed to increase the cellular ceramide levels, D-e-C8-Cer, D-t-C8-Cer and D-e-C8-Ceramine activated the CAPK equally. These studies suggest that the DNA fragmentation-inducing ability of the threo stereoisomers and D-e-C8-Ceramine cannot be attributed either to an increase in the activity of CAPK, or, as illustrated by D-e-C8-Ceramine and L-t-C8-Cer, to the differential elevation of endogenous ceramide. The phosphatase inhibitor okadaic acid failed to protect U937 cells from apoptosis induced by D-e-C8-Cer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号