首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerical simulation results obtained with a transported scalar probability density function (PDF) method are presented for a piloted turbulent premixed flame. The accuracy of the PDF method depends on the scalar mixing model and the scalar time scale model. Three widely used scalar mixing models are evaluated: the interaction by exchange with the mean (IEM) model, the modified Curl’s coalescence/dispersion (CD) model and the Euclidean minimum spanning tree (EMST) model. The three scalar mixing models are combined with a simple model for the scalar time scale which assumes a constant C?=12 value. A comparison of the simulation results with available measurements shows that only the EMST model calculates accurately the mean and variance of the reaction progress variable. An evaluation of the structure of the PDF’s of the reaction progress variable predicted by the three scalar mixing models confirms this conclusion: the IEM and CD models predict an unrealistic shape of the PDF. Simulations using various C? values ranging from 2 to 50 combined with the three scalar mixing models have been performed. The observed deficiencies of the IEM and CD models persisted for all C? values considered. The value C?=12 combined with the EMST model was found to be an optimal choice. To avoid the ad hoc choice for C?, more sophisticated models for the scalar time scale have been used in simulations using the EMST model. A new model for the scalar time scale which is based on a linear blending between a model for flamelet combustion and a model for distributed combustion is developed. The new model has proven to be very promising as a scalar time scale model which can be applied from flamelet to distributed combustion.  相似文献   

2.
The combustion of hydrogen in a hot, bubbling bed of quartz sand fluidized by air has been studied for the first time, by injecting hydrogen just above the distributor, via six horizontal fine tubes of Cr/Ni. Overall the fluidizing gas was oxygen-rich, with the composition varying from nearly stoichiometric to very lean mixtures. With the bed initially fluidized at room temperature, combustion (after ignition by a pilot flame) occurs in a premixed flame sitting on top of the bed. When the sand warms up, combustion becomes explosive in bubbles leaving the bed, exactly as with a hydrocarbon as fuel. However, in contrast to hydrocarbons, it is clear that when the bed reaches 500-600 °C, heat is produced both above the top of the bed (because of H2 bypassing the bed) and very low down in the bed. In fact, with hydrogen as fuel, the location of where bubbles ignite descends abruptly to low in the sand; furthermore, the descent occurs at ∼500 °C, which is ∼100 K below the ignition temperature predicted by well-established kinetic models. However, the kinetic models do reproduce the observations, if it is assumed that the Cr/Ni hypodermic tubes, through which the fuel was injected, exert a catalytic effect, producing free H atoms, which then give rise to HO2 radicals. In this situation, kinetic modeling indicates that bubbles ignite when they become sufficiently large and few enough to have a lifetime (i.e. the interval between their collisions) longer than the ignition delay for the temperature of the sand. The amounts of NO found in the off-gases were at a maximum (24 ppm), when the bed was at ∼500 °C for λ=[O2]/stoich[O2]=1.05. The variations of [NO] with [air]/[H2] and also temperature indicate that NO is produced, at least partly, via the intermediate N2H. In addition, the air-afterglow emission of green light (from NO+O→NO2+hν) was observed in the freeboard, indicating the presence there of both NO and free atoms of oxygen for 1.05<λ<1.1.  相似文献   

3.
On various modeling approaches to radiative heat transfer in pool fires   总被引:1,自引:0,他引:1  
Six computational methods for solution of the radiative transfer equation in an absorbing-emitting, nonscattering gray medium were compared for a 2-m JP-8 pool fire. The emission temperature and absorption coefficient fields were taken from a synthetic fire due to the lack of a complete set of experimental data for computing radiation for large and fully turbulent fires. These quantities were generated by a code that has been shown to agree well with the limited quantity of relevant data in the literature. Reference solutions to the governing equation were determined using the Monte Carlo method and a ray-tracing scheme with high angular resolution. Solutions using the discrete transfer method (DTM), the discrete ordinates method (DOM) with both S4 and LC11 quadratures, and a moment model using the M1 closure were compared to the reference solutions in both isotropic and anisotropic regions of the computational domain. Inside the fire, where radiation is isotropic, all methods gave comparable results with good accuracy. Predictions of DTM agreed well with the reference solutions, which is expected for a technique based on ray tracing. DOM LC11 was shown to be more accurate than the commonly used S4 quadrature scheme, especially in anisotropic regions of the fire domain. On the other hand, DOM S4 gives an accurate source term and, in isotropic regions, correct fluxes. The M1 results agreed well with other solution techniques and were comparable to DOM S4. This represents the first study where the M1 method was applied to a combustion problem occurring in a complex three-dimensional geometry. Future applications of M1 to fires and similar problems are recommended, considering its similar accuracy and the fact that it has significantly lower computational cost than DOM S4.  相似文献   

4.
Mathematical modeling of MILD combustion of pulverized coal   总被引:1,自引:0,他引:1  
MILD (flameless) combustion is a new rapidly developing technology. The IFRF trials have demonstrated high potential of this technology also for N-containing fuels. In this work the IFRF experiments are analyzed using the CFD-based mathematical model. Both the Chemical Percolation Devolatilization (CPD) model and the char combustion intrinsic reactivity model have been adapted to Guasare coal combusted. The flow-field as well as the temperature and the oxygen fields have been accurately predicted by the CFD-based model. The predicted temperature and gas composition fields have been uniform demonstrating that slow combustion occurs in the entire furnace volume. The CFD-based predictions have highlighted the NOx reduction potential of MILD combustion through the following mechanism. Before the coal devolatilization proceeds, the coal jet entrains a substantial amount of flue gas so that its oxygen content is typically not higher than 3-5%. The volatiles are given off in a highly sub-stoichiometric environment and their N-containing species are preferentially converted to molecular nitrogen rather than to NO. Furthermore, there exists a strong NO-reburning mechanism within the fuel jet and in the air jet downstream of the position where these two jets merge. In other words, less NO is formed from combustion of volatiles and stronger NO-reburning mechanisms exist in the MILD combustion if compared to conventional coal combustion technology.  相似文献   

5.
Transported probability density function (TPDF) methods are well suited to modelling turbulent, reacting, variable density flows. One of the main challenges to the successful deployment of TPDF methods is accurately modelling the unclosed molecular mixing term. This study examines three of the most widely used mixing models: the Interaction by Exchange with the Mean (IEM), Modified Curl (MC) and Euclidean Minimum Spanning Tree (EMST) models. Direct numerical simulation (DNS) data-sets were used to provide both initial conditions and inputs needed over the course of the runs, including the mean flow velocities, mixing frequency, and the turbulent diffusion coefficient. The same chemical mechanism and thermodynamic properties were used, allowing the study to focus on the mixing model. The simulation scenario was a one-dimensional, nonpremixed, turbulent jet flame burning either a syngas or ethylene fuel stream that featured extinction and reignition. This test scenario was selected because extinction and reignition phenomena are sensitive to the mixing model. Three DNS cases were considered for both the syngas and ethylene cases with a parametric variation of Reynolds and Damköhler numbers, respectively. Extinction events became more prevalent with increasing Reynolds number in the syngas cases and with decreasing Damköhler number in the ethylene cases. The model was first tested with the mixing frequency defined from the dissipation rate and variance of mixture fraction. With this definition, for the syngas cases this study finds that the TPDF method is successful at predicting flame extinction and reignition using all three mixing models for the relatively lower and intermediate Reynolds number cases, but that all models under-predict reignition in the relatively higher Reynolds number case. In the ethylene fuelled cases, only the EMST mixing model correctly predicts the reignition event for the two higher Damköhler number cases, however, in the lowest Damköhler number case the EMST model over-predicts reignition and the IEM and MC models under-predict it. Mixing frequency was then modelled based on the turbulence frequency and a model constant C?C?, the ratio of scalar to mechanical mixing rates. The DNS cases were reexamined with this definition and the results suggested that the optimal value for C?C? is mixing model and case dependent. In particular, it was found in the ethylene case considered that reignition could be achieved with the IEM and MC models by adjusting the value of C?C?.  相似文献   

6.
This paper presents the hourly mean solar radiation and standard deviation as inputs to simulate the solar radiation over a year. Monte Carlo simulation (MCS) technique is applied and MATLAB program is developed for reliability analysis of small isolated power system using solar photovoltaic (SPV). This paper is distributed in two parts. Firstly various solar radiation prediction methods along with hourly mean solar radiation (HMSR) method are compared. The comparison is carried on the basis of predicted electrical power generation with actual power generated by SPV system. Estimation of solar photovoltaic power using HMSR method is close to the actual power generated by SPV system. The deviation in monsoon months is due to the cloud cover. In later part of the paper various reliability indices are obtained by HMSR method using MCS technique. Load model used is IEEE-RTS. Reliability indices, additional load hours (ALH) and additional power (AP) reduces exponentially with increase in load indicates that a SPV source will offset maximum fuel when all of its generated energy is utilized. Fuel saving calculation is also investigated. Case studies are presented for Sagardeep Island in West Bengal state of India.  相似文献   

7.
On the spectral bands measurements for combustion monitoring   总被引:2,自引:0,他引:2  
In this work, spatial–spectral experimental issues affecting the detection of radical emissions in a natural gas flame are discussed and studied by a radiometric analysis of the flame spectral emission. As results of this analysis, Local and Global Spectral Radiation Measurements (LSRM and GSRM respectively) techniques are proposed, and guidelines for selecting the radical emission bands and spatial location of photodetectors are given. Two types of experiments have been performed in order to demonstrate the reliability of the GSRM technique for combustion characterization. In the first experiment, the LSRM and the GSRM have been implemented by using a home made sensor array, based on silicon photodiodes, for sensing the excited CH and radicals in a natural gas flame. It has been experimentally demonstrated that by using the GSRM, the signal’s dispersion can be reduced to about 86% for the CH and 76% for the with respect to the obtained values with LSRM methodology. In the second experiment, the GSRM technique has been applied for sensing the CH and radicals, where it has been found that the signals emissions ratio /CH provides a good indicator of the thermal combustion efficiency and the CO pollutants emissions, with small dispersion. Thus, the GSRM technique has corroborated the usefulness of that ratio for combustion monitoring.  相似文献   

8.
This study reports the results of a numerical investigation of turbulent natural convection in a square enclosure with localized heating from below and symmetrical cooling from the vertical side walls. The present study simulates the case of an accidental heat generation due to fire in a typical isolated building of a nuclear reactor or electronic components cabin. The source of fire is considered to be centrally located at the bottom wall with different heated widths, which is assumed to be either isothermal or with isoflux. For the purpose of the analysis, the source length is varied from 20 to 80% of the total width of the bottom wall. The top wall and the unheated portion of the bottom wall are considered to be adiabatic, whereas sidewalls are isothermal. Steady as well as transient forms of two-dimensional Reynolds–Averaged-Navier–Stokes equations and conservation equations of mass and energy, coupled with the Boussinesq approximation, are solved by the control volume based discretisation method employing the SIMPLE algorithm for pressure–velocity coupling. Turbulence is modeled using the standard kε model. Rayleigh number, Ra, based on the enclosure height is varied from 108 to 1012. Stream lines and isotherms are presented for various combinations of Ra and the heated width. A double cell flow pattern is observed with marginal loss in symmetry as Ra increases. The results are reported in the form of local and average Nusselt number on the heated floor. Correlations are developed to predict the heat transfer rates from the enclosure as a function of dimensionless heated width of the bottom wall and Ra, by least square linear regression analysis.  相似文献   

9.
A solar-assisted ejector cooling system is simulated in order to investigate the validity of a design methodology. Hourly simulation results allow for computing the solar fraction, in cases when the cooling capacity of the ejector cycle is kept constant during daily periods. The computed solar fraction is compared with estimates obtained from the method based on the utilizability concept. An equivalent minimum temperature for the utilizability of the solar system is found, which proves to be different, but close to, the vapor generator temperature of the ejector cycle. It is shown that the solar fraction derived from the utilizability concept based on the monthly means of the global solar radiation is applicable to solar-assisted ejector cooling cycles, in cases when the minimum temperature at which solar heat is supplied to the load is determined. Good agreement is found between the solar fraction results obtained from the simulations and those obtained by the method.  相似文献   

10.
In the present work, novel composites (x=0,5,10,30) for hydrogen storage were prepared by two-step re-melting and their activation characteristic and microstructure were investigated. The influence of Mg2Ni content on the activation characteristics was analyzed by electrochemical method. With the increasing content of Mg2Ni, activation characteristics and maximum discharge capacities of composites increase first and then decrease. The composite with 5% Mg2Ni has the least cycle number for activation and the highest discharge capacity. It is activated after only 6 cycles (Cn=6) at room temperature and its maximum discharge capacity (Cmax) reaches 274.4 mAh/g. However, the composite contained 30 wt% Mg2Ni is difficult to be activated at room temperature. It is also found that it is easier to be activated for the composites at and than that at and , but their discharge capacity decay slightly at the condition of and . The XRD and SEM analysis show that, with the increasing Mg2Ni content, the microstructure of the composites varies gradually from lamellar (x=5), acicular (x=10) to massive (x=30), and the activity of the composite declines as a result of the grain size of phase Mg2Ni grows up.  相似文献   

11.
The paper provides global regionalized projections of passenger car demand, use and associated CO2 emissions from 11 world regions. The study is based on empirical data that have been originally collated from international sources for the purpose of modeling region-specific car stock demand. Derived demands serve as indicator of car related fuel consumption and associated CO2 emissions, which are calculated on the basis of behavioral and technological scenarios. The obtained CO2 emission paths are sectoral baseline scenarios that identify region-specific potentials of growth in car induced CO2 emissions assuming that current trends continue to prevail. The study adopts a multi-model approach to car demand by applying two methodologies rooted in the economics of consumption: utility maximization and single equation models. The utility maximization method for modeling car demand is driven by the preferences of the representative consumers of each world region, subject to exogenous price and income trajectories. The latter is adopted from an optimal growth model. This is a novel approach to projecting global regionalized sectoral car demands. The study is complemented by the application of single equation income–consumption models based on logistical Gompertz functions and non-linear regression techniques to compare model results.  相似文献   

12.
The chemistry of nitrogen species and the formation of NOx in hydrogen combustion are analyzed here on the basis of a large set of experimental measurements.The detailed kinetic scheme of H2/O2 combustion was updated and upgraded using new kinetic and thermodynamic measurements, and was validated over a wide range of temperatures, pressures and equivalence ratios. The mechanism's performance at high pressures was greatly improved in particular by adopting higher rate parameters for the H+OH+M=H2O reaction.The NOx sub-mechanism was further validated and updated. The kinetic parameters of the NO2+H2=HONO+H and N2H2+NO=N2O+NH2 reactions were updated in order to improve model predictions in specific conditions.Sensitivity analyses were carried out to determine which reactions dominate the H2/O2 and H2/NOx systems at particular operating conditions.Good overall agreement was observed between the model and the wide range of experiments simulated.  相似文献   

13.
We have fabricated bulk heterojunction (BHJ) photovoltaic devices based on the as cast and thermally annealed P:[6,6]-phenyl-C-61-butyric acid methyl ester (PCBM) blends and found that these devices gave power conversion efficiency (PCE) of about 1.15 and 1.60% respectively. P is a novel alternating phenylenevinylene copolymer which contains 2-cyano-3-(4-(diphenylamino)phenyl)acrylic acid units along the backbone and was synthesized by Heck coupling. This copolymer was soluble in common organic solvents and showed long-wavelength absorption maximum at 390-420 nm with optical band gap of 1.94 eV. The improvement of PCE after thermal annealing of the device based on the P:PCBM blend was attributed to the increase in hole mobility due to the enhanced crystallinity of P induced by thermal treatment. In addition, we have fabricated BHJ photovoltaic devices based on the as cast and thermally annealed PB:P:PCBM ternary blend. PB is a low band gap alternating phenylenevinylene copolymer with BF2-azopyrrole complex units, which has been previously synthesized in our laboratory. We found that the device based on this ternary blend exhibited higher PCE (2.56%) as compared to either P:PCBM (1.15%) or PB:PCBM (1.57%) blend. This feature was associated with the well energy level alignment of P, PB and PCBM, the higher donor-acceptor interfaces for the exciton dissociation and the improved light harvesting property of the ternary blend. The further increase in the PCE with thermally annealed ternary blend (3.48%) has been correlated with the increase in the crystallinity of both P and PB. Finally, we used copolymer P as sensitizer for quasi solid state dye-sensitized solar cell and we achieved PCE of approximately 3.78%.  相似文献   

14.
Cu2ZnSnS4 (CZTS) thin films were prepared by sulfurizing precursors deposited by the sol–gel method. Copper (II) acetate monohydrate, zinc (II) acetate dihydrate and tin (II) chloride dihydrate were used as the starting materials of the sol–gel method, and 2-methoxyethanol and monoethanolamine were used as the solvent and the stabilizer, respectively. The solution was spin coated on soda lime glass substrates and dried at . The coated glasses were sulfurized by annealing at in a hydrogen sulfide-containing atmosphere. The annealed thin films showed X-ray diffraction peaks attributed to the single phase CZTS. The chemical composition of the films was almost stoichiometric and the band gap energy was at room temperature.  相似文献   

15.
A process of simultaneous hydrogen production and H2S removal has been investigated over a highly active composite photocatalyst made of bulk CdS decorated with nanoparticles of TiO2, i.e. CdS(bulk)/TiO2. The photocatalytic activity was evaluated for hydrogen production from aqueous electrolyte solution containing H2S dissolved in water or alkaline solution under visible light irradiation. The rate of hydrogen production from the H2S-containing alkaline solution was similar to the rate obtained from photocatalytic hydrogen production from water containing sacrificial reagents (Na2S+Na2SO3) in the similar concentration. The isotope experiment was carried out with D2O instead of H2O to investigate the source of hydrogen from photocatalytic decomposition of H2S dissolved in H2O or alkali solution under visible light. Hydrogen originated from both H2S and H2O when the reaction solution contained H2S absorbed in alkaline water.  相似文献   

16.
Surya Santoso  Ha Thu Le   《Renewable Energy》2007,32(14):2436-2452
One critical task in any wind power interconnection study involves the modelling of wind turbines. This paper provides the most basic yet comprehensive time–domain wind turbine model upon which more sophisticated models along with their power and speed control mechanisms, can be developed. For this reason, this paper concentrates on the modelling of a fixed-speed wind turbine. The model includes turbine's aerodynamic, mechanical, and electrical components. Data for the rotor, drive-train, and electrical generator are given to allow replication of the model in its entirety. Each of the component-blocks of the wind turbine is modelled separately so that one can easily expand the model to simulate variable-speed wind turbines or customise the model to suit their needs. Then, an aggregate wind turbine model, or wind farm, is developed. This is followed by four case studies to demonstrate how the models can be used to study wind turbine operation and power grid integration issues. Results obtained from the case studies show that the models perform as expected.  相似文献   

17.
The durability of Nafion® polymer electrolyte membranes (PEMs) with potential application in PEM fuel cells has been investigated using accelerated durability tests to understand their degradation mechanism. After the attack by Fenton radicals, the Nafion®111 membranes and the solution produced were collected for analysis. The existence of F ions in the solution indicated the chemical decomposition of the Nafion® membranes during radical attacks. The F- emission rate (FER) was about , corresponding to 0.024 wt% of F released from the membrane per hour. The NMR and FTIR spectrums demonstrated the polymer fragments mostly existed as whole side chains of the Nafion® membrane. This result revealed that the degradation was originated from the decomposition of polymer main chain. Furthermore, the reflectance-FTIR revealed that the degradation of the PEMs was from the decomposition of the repeating units in the polymer main chains. With the increased loss of repeating units, small bubbles with the diameter of several microns started to form in Nafion® membrane. These bubbles made the membrane vulnerable to hazards of gas crossover, which further led a catastrophic failure of the proton exchange membrane.  相似文献   

18.
Cu(In,Ga)Se2 Solar cells with graded band gap and efficiencies up to 13% have been fabricated on transparent ZnO:Al back contacts. The back contact structure includes a transparent 10 nm thin Mo interlayer with NaF precursor between the ZnO:Al and the Cu(In,Ga)Se2 absorber that transforms the blocking ZnO:Al/Cu(In,Ga)Se2 interface into an Ohmic back contact. To investigate the electronic quality of the back contact, the cells are analyzed by internal quantum efficiency measurements under illumination from front and back side. A new semianalytical model for the quantum efficiency of graded band gap absorbers yields quantitative information about the back contact recombination velocity as well as optical and electronic material parameters of the absorber layer. Band gap grading significantly increases carrier collection. However, in the immediate vicinity of the back contact carrier collection is limited by a high ratio of back contact recombination velocity and diffusion constant .  相似文献   

19.
The electronic properties of the Mg2NiH4 monoclinic phase are calculated using a density functional approach calculation. The crystalline parameters and interatomic distances calculated are close to the experimental values within a 3% error. We also evaluate the density of states (DOS) and character of the chemical bonding for the hydrogen's located in their equilibrium positions. While the Ni–Mg interaction is dominant in the pure alloy, in the hydride the hydrogen atoms present a bonding much more developed with Ni than with Mg. The principal bonding interaction is Ni sp–H s. Moreover, a small bonding between Ni deg and H 1s is observed. Up the Fermi level, the Ni–H interaction is slightly antibonding. The Mg–Ni bonding interactions are weaker in the hydride phase when compared with the pure Mg2Ni alloy. The present study is potentially useful because the alloys Mg–Ni are good materials for hydrogen storage.  相似文献   

20.
An innovative method, isothermal evaporation casting process (IECP), is developed to produce Mg2Ni alloy for mass production in this work. In the past, high vapor pressure of Mg was considered as a disadvantage for producing pure Mg2Ni alloy. However, this characteristic was used to develop a refinement procedure to separate primary Mg2Ni alloy from Mg/Mg2Ni eutectic matrix. Characteristics of as-cast specimens measured by X-ray diffraction (XRD), inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and electron probe X-ray microanalyzer (EPMA) reveal that mass production of single phase Mg2Ni alloy was successfully fabricated by IECP. For every 4.0 kg of raw materials, alloy bulk was extracted at a yield of about 65%. The hydrogen storage capacity of the well-activated Mg2Ni alloy reaches 3.58 wt% at 300 °C under 40 atm H2 atmosphere which is close to the theoretical capacity of 3.6 wt%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号