首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new composite alloy Mg2Ni-xwt.% Ti2Ni has been successfully synthesised using a ‘particle inlaying’ method. Scanning electron microscopy and energy dispersive spectroscopy revealed that very fine Ti2Ni particles were inlaid onto the surface of Mg2Ni particles by mechanical treatment and sintering. XRD showed the composite alloys were composed of primary alloys Mg2Ni, Ti2Ni and new phases TiNi, Ti---Mg formed in the composite procedure. The electrode characteristics of Mg2Ni-xwt.% Ti2Ni alloys in an alkaline solution have been investigated and compared with those of Mg2Ni. The discharge capacity of the alloy electrode was effectively improved from 8 mA h g1 of Mg2Ni to 165 mA h g1 of Mg2Ni-40wt.% Ti2Ni at ambient temperature, which is almost comparable with that of Ti2Ni electrode (170 mA h g1). It is believed that the fine Ti2Ni particles inlaid on the surface of Mg2Ni particles play a two-fold role: firstly, they hydride-dehydride as hydrogen storage materials themselves: secondly, they provide active sites and pathways for Mg2Ni hydriding-dehydriding. This is supported by analysis of discharge behaviour and electrochemical impedance spectra studies.  相似文献   

2.
We synthesized new composite particles for hydrogen storage on the basis of an idea of “particle designing”. As starting materials, powders of Mg and YNi2 were selected. Fine composite particles containing mainly Mg2Ni could be designed by repetitive hydriding and dehydriding cycles at 673 K. In the synthesis process of the composite particles, the following two points were found to be essential for this technique. The first point is that, after being activated by the sequential processes of hydrogenation, amorphization and disproportionation, YNi2 reacts effectively with Mg. The second point is that evaporated Mg, which occurs during dehydriding, adheres to the surface of the activated YNi2 and accelerates a diffusion reaction to form Mg2Ni at the interface. In these composite particles, Mg2NiH4 is formed, even at 373 K, under a hydrogen pressure of 5 MPa.  相似文献   

3.
High-energy dry ball-mill and post-anneal processing were applied to synthesize MgTiO3 and Mg2TiO4 single crystalline phases from the predetermined compositions of MgO–TiO2 powder mixtures. Also, the experiments were performed to show that it is possible to prepare MgAl2O4 single crystalline phase from the predetermined composition of MgO–Al2O3 powder mixture only by employing high-energy dry ball milling, i.e. without post-annealing the milled samples. In contrast, fully developed single crystalline powders of MgTiO3 and Mg2TiO4 were obtained after post-annealing the milled samples for 1 h at 900 and 1200 °C, respectively.  相似文献   

4.
为提高镁合金表面的耐磨性,利用5kW横流连续CO2激光器在AZ31B镁合金表面熔覆Ni60合金粉末,制备了无裂纹、气孔等缺陷的熔覆层。分析讨论了不同激光功率下熔覆层的显微组织和磨损性能。结果表明:熔覆层的显微组织为典型的枝晶状态,且随着激光功率的增加,枝晶尺寸增加;不同的激光功率下,熔覆层都由Mg、MgNi2、Mg2Ni3Si、Mg2Ni、Mg2Si和FeNi组成,但当激光功率增加时,Mg相含量逐渐减小,其它相含量逐渐增多。在枝晶细化和各种金属间化合物的共同作用下,熔覆层的显微硬度和耐磨性能都得到提高,且激光功率P=3 000W时,提高程度最大,即显微硬度提高了840%~1 102%,磨损失量是原始AZ31B镁合金的8.57%。  相似文献   

5.
Mg2−xSnxNi (x = 0, 0.1, 0.3) alloys were synthesized by reactive ball milling under protective Ar atmosphere and liquid n-heptane. The microstructure and the morphology of the powders were determined by X-ray diffraction and scanning electron microscopy. The as-milled alloys consist of Mg2Ni nanocrystals with an average grain size in the range 3–7 nm, depending on the alloy composition. Sn containing phases were not detected even in the Sn-rich alloy. Obviously, Sn is dissolved in the Mg2Ni intermetallic compound. Gas phase sorption of hydrogen was not observed in the alloys containing Sn (Mg2−xSnxNi; x = 0.1, 0.3). It was suggested that Sn impedes the process of hydrogen molecules decomposition. The as-milled alloys absorbed reversibly hydrogen electrochemically. Mg2Ni alloy showed the highest discharge capacity of 300 mAh/g. The capacity of Mg1.9Sn0.1Ni and Mg1.7Sn0.3Ni was about 260 mAh/g. It was found that Sn improved the cycle life of the electrode.  相似文献   

6.
The effect of sequential and continuous high-energy impact mode in the magneto-mill Uni-Ball-Mill 5 on the mechano-chemical synthesis of nanostructured ternary complex hydride Mg2FeH6 was studied by controlled reactive mechanical alloying (CRMA). In the sequential mode the milling vial was periodically opened under a protective gas and samples of the milled powder were extracted for microstructural examination whereas during continuous CRMA the vial was never opened up to 270 h duration. MgO was detected by XRD in sequentially milled powders while no MgO was detected in the continuously milled powder. The abundance of the nanostructured ternary complex hydride Mg2FeH6, produced during sequential milling, and estimated from DSC reached 44 wt.% after 188 h, and afterwards it slightly decreased to 42 wt.% after 210 and 270 h. In contrast, the DSC yield of Mg2FeH6 after continuous CRMA for 270 h was 57 wt.%. Much higher yield after continuous milling is attributed to the absence of MgO. This behavior provides strong evidence that MgO is a primary factor suppressing formation of Mg2FeH6. The DSC hydrogen desorption onset temperatures are close to 200 °C while the desorption peak temperatures for all powders are below 300 °C and the desorption process is completed within the range 10–20 min. Within the investigated nanograin size range of 5–13 nm, the DSC desorption onset and peak temperatures of β-MgH2 and Mg2FeH6 do not exhibit any trend with nanograin (crystallite) size of hydrides. TPD hydrogen desorption peaks from the powders containing a single ternary complex hydride Mg2FeH6, are very narrow, which indicates the presence of small but well-crystallized hydride particles. Their narrowness provides good evidence that the phase composition, bulk hydrogen distribution and hydride particle size distribution are very homogeneous. The overall amount of hydrogen desorbed in TPD from single-hydride Mg2FeH6 powders is somewhat higher than that observed in DSC and TGA desorption.

The powder milled sequentially for 270 h and desorbed in a Sieverts-type apparatus at 250 and 290 °C, yielded about a half of the hydrogen content obtained during DSC and TGA tests. No desorption of hydrogen was detected in a Sieverts-type apparatus at 250 and 290 °C after 128 and 70 min, respectively, from the powder continuously milled for 270 h. The latter easily desorbed 3.13 and 2.83 wt.% hydrogen in DSC and TGA tests, respectively.  相似文献   


7.
In this study, microstructural evolution of Mg–Ni alloy during mechanical alloying(MA) was investigated.Also, a thermodynamic approach was utilized to predict the most stable phases formed in Mg–Ni alloy after MA. The phase composition and microstructural properties of Mg–Ni alloy were assessed by X-ray diffractometry, high-resolution field emission scanning electron microscopy and high-resolution transmission electron microscopy. The results showed that ball milling of magnesium and nickel powder mixture for 70 h yields nanostructural Mg2Ni compound with an average grain size of ~20 nm. Thermodynamic calculations revealed that in the composition ranges of 0.0 \ XMg\ 0.03(at.%)and 0.97 \ XMg\ 1, there is no driving force for amorphous phase formation. In the composition range of 0.07 \ XMg\ 0.93, the change of Gibbs free energy for amorphous phase formation was more negative than solid solution.While for XMg= 0.66(nominal composition of Mg2Ni intermetallic phase), the change of Gibbs free energy for intermetallic phase was found to be more negative than both amorphous and solid solution phases indicating that Mg2Ni intermetallic compound is the most stable phase, in agreement with the experimental observations.  相似文献   

8.
The structural and kinetic characteristics of the mechanically alloyed Mg1.9Al0.1Ni were investigated. It was found that Mg1.9Al0.1Ni can absorb/desorb about 3.55/3.44 mass% H at a high rate and it has a hexagonal crystal structure as Mg2Ni. The hydriding/dehydriding (H/D) rates in the two-phase (–β) region of Mg1.9Al0.1Ni were measured and studied at temperatures ranging from 553 to 623 K under an approximately isobaric condition. The obtained data of H/D rates indicated that hydrogen diffusion was the rate-controlling step through the hydride phase. A new model was successfully used to calculate the kinetic experimental results. It can be seen that theoretical calculation agrees well with experimental data. The corresponding activation energies are 47 600 and 54 500 J/mol H2 for H/D processes, respectively.  相似文献   

9.
A new ternary compound of composition LaMg2Ni has been found and investigated with respect to structure and hydrogenation properties. It crystallizes with the orthorhombic MgAl2Cu type structure (space group Cmcm, a=4.2266(6), b=10.303(1), c=8.360(1) Å; V=364.0(1) Å3; Z=4) and absorbs hydrogen near ambient conditions (<200 °C, <8 bar) thereby forming the quaternary metal hydride LaMg2NiH7. Neutron powder diffraction on the deuteride revealed a monoclinic distorted metal atom substructure (LaMg2NiD7: space group P21/c, a=13.9789(7), b=4.7026(2), c=16.0251(8) Å; β=125.240(3)°, V=860.39(8) Å3; Z=8) that contains two symmetry independent tetrahedral [NiD4]4− complexes with Ni–D bond lengths in the range 1.49–1.64 Å, and six Danions in tetrahedral metal configuration with bond distances in the ranges 1.82–2.65 Å (Mg) and 2.33–2.59 Å (La). The compound constitutes a link between metallic ‘interstitial’ hydrides and non-metallic ‘complex’ metal hydrides.  相似文献   

10.
The composites of Mg–x wt.% CaNi5 (x = 20, 30 and 50) were prepared by hydriding combustion synthesis (HCS) and the phase evolution during HCS as well as the hydriding properties of the products were investigated. It was found that Mg reacted with CaNi5 forming Mg2Ni and Ca during the heating period of HCS. Afterwards, the resultant Mg2Ni and Ca as well as the remnant Mg reacted with hydrogen during the cooling period. The lower platform in the PC isotherms corresponds to the hydriding of Mg, and the higher one corresponds to Mg2Ni. With the increase of the content of CaNi5 from 20 to 50 wt.%, the hydrogen content of the HCS products increases at first and then decreases. The Mg–30 wt.% CaNi5 composite has the maximum hydrogen capacity of 4.74 wt.%, and it can absorb 3.51 wt.% of hydrogen in the first hydriding process without activation.  相似文献   

11.
MgCNi3, an intermetallic compound with superconductivity, was synthesized from the Mg (or Mg2Ni), Ni and graphite powders by mechanical alloying (MA). It is shown that the preliminary condition for the formation of MgCNi3 is that Mg2Ni must form in advance of MgCNi3 in the MA process or be the starting component.  相似文献   

12.
As-milled composite metal hydrides composed of Mg2Ni and TiNi phases were cold-pressed under a pressure of 490 MPa and sintered for 1 h at 5×10−6 Torr and 300 °C. Electrochemical characteristics of the sintered composite metal hydride electrode were investigated. The maximum discharge capacity of the sintered composite alloy electrode was 125 mAh/g at a discharge current density of 100 mA/g. This value was similar to that of the as-milled one before sintering. However, the sintered electrode retained 80% of the maximum discharge capacity after 150 cycles, while the as-milled electrode retained only 55%. This is because after the sintering process an interface between Mg2Ni and TiNi plays a role similar to a diffusion layer of hydrogen. In the sintered composite electrode, when a discharging step proceeds, hydrogen absorbed in a Mg2Ni particle can move into a TiNi phase through the bonded-interface between Mg2Ni and TiNi, then discharges at the interface between TiNi and the electrolyte. Also, the electrochemical impedance spectroscopy (EIS) tests showed that the composite alloy electrodes had a lower charge-transfer resistance and a higher hydrogen diffusion coefficient than those in single-phase Mg2Ni. This indicates that TiNi particles in the composite are the active sites for redox reaction of hydrogen and the pathway for the diffusion of hydrogen  相似文献   

13.
The phase relations and hydrogenation behavior of Sr(Al1−xMgx)2 alloys were studied. The pseudobinary C36-type Laves phase Sr(Al,Mg)2 was found as a structural intermediate between the Zintl phase and the C14 Laves phase. The single-phase regions for the Zintl phase, C36 phase and C14 phase, were determined to be x=0–0.10, 0.45–0.68 and 0.80–1, respectively. The Mg-substituted Zintl phase Sr(Al0.95Mg0.05)2 can be hydrogenated to Sr(Al,Mg)2H2 at about 473 K. However, the Sr(Al,Mg)2H2 directly decomposes into SrH2 and Sr(Al,Mg)4 starting at 513 K. When the temperature is 573 K, the C36 Laves phase Sr(Al0.5Mg0.5)2 can be hydrogenated into SrMgH4 and Al, while the C14 Laves phase Sr(Al0.1Mg0.9)2 is hydrogenated into SrMgH4, Mg17Al12 and Mg.  相似文献   

14.
The laser beam weld heat affected zone (HAZ) microstructure of a newly developed aerospace alloy, IC 6, was examined. HAZ microfissuring was observed and found to be associated with grain boundary liquation facilitated by subsolidus eutectic-type transformation of the alloy’s major phase, γ′ precipitates, and interfacial melting of M6C-type carbide and (Mo2Ni)B2-type boride particles.  相似文献   

15.
Mg6Ir2H11 has been synthesised by both hydrogenation of the intermetallic compound Mg3Ir at 20 bar and 300 °C, and sintering of the elements at 500 °C under 50 bar hydrogen pressure. Neutron powder diffraction on the deuteride indicates a monoclinic structure (space group P21/c, Mg6Ir2D11: a=10.226(1), b=19.234(2), c=8.3345(9) Å, β=91.00(1)°, T=20 °C) that is closely related to orthorhombic Mg6Co2H11. It contains a square-pyramidal [IrH5]4− complex and three saddle-like [IrH4]5− complexes of which one is ordered and two are disordered. Five hydride anions H are exclusively bonded to magnesium. The compound has a red colour, is presumably non-metallic and decomposes under 3 bar argon at 500 °C into Mg3Ir, iridium and a previously unreported intermetallic compound of composition Mg5Ir2.  相似文献   

16.
Magnesium alloys are potentially the best materials for gaseous hydrogen storage. However, their practical use is limited by poor hydrogen absorption and desorption kinetics. This problem can be resolved by mixing Mg alloys with other materials to form composites. We present an investigation of the initial hydriding characteristics, as well as the compositional transformation of composites made of La2Mg17 + LaNi5 mechanically milled in a 2:1 weight ratio. Composites produced with varying durations and intensities of milling were tested. Those milled to the greatest extent proved to have the best initial hydrogen absorption and desorption kinetics. The kinetics of the most heavily milled composite were superior to those of La2Mg17. This composite absorbed 90% of its full hydrogen capacity (3.5 wt.% H2) in less than 1 min at 250°C and desorbed the same quantity of hydrogen in 6 min. Under the same conditions pure La2Mg17 took 2.5 h to absorb and 3 h to desorb 90% of its full hydrogen capacity (4.9 wt.% H2). Scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction were used to characterize the mechanically milled powders before and after hydriding. The unhydrided powders consisted of LaNi5 grains surrounded by a fractured LaMg17 matrix. Hydrogen cycling, at temperatures up to 350°C, induced phase changes, segregation, and disintegration of the composites. The resulting fine powder (less than 1 μm) consisted primarily of Mg, Mg2Ni, and La phases.  相似文献   

17.
In this investigation, MoSi2 intermetallic compound has been synthesized by reducing of MoO3/SiO2 powder mixtures by Al and carbon via mechanical alloying (MA). Powder mixtures were ball milled for 0–100 h and structural evolutions have been monitored by X-ray diffraction. In the Al system, both β-MoSi2 (high temperature phase) and -MoSi2 (low temperature phase) were obtained after 3 h of milling and after 70 h of milling the β-phase transformed to -phase. The crystallite size of -MoSi2 and Al2O3 after milling for 100 h was 12 and 17 nm, respectively. In reducing with carbon, two different compositions with nominal carbon content of 13.7 and 24 wt.% were used that in both compositions, -MoSi2 forms during 10 h of milling. Higher carbon content increases the amount of MoSi2.  相似文献   

18.
Effects of precursor milling on phase evolution and morphology of mullite (3Al2O3·2SiO2) processed by solid-state reaction have been investigated. Alumina and silica powders were used as starting materials and milling was taken place in a medium energy conventional ball mill and a high-energy planetary ball mill. Milling in a conventional ball mill although decreases mullite formation temperature by 200 °C, but does not considerably change mullite phase morphology. Use of a planetary ball mill after 40 h of milling showed to be much more effective in activating the oxide precursors, and mullitization temperature was reduced to below 900 °C. Whisker like mullite was formed after sintering at 1450 °C for 2 h and volume fraction of this structure was increased by increasing the milling time. XRD results showed that samples mechanically activated for 20 h in the planetary ball mill were fully transformed to mullite after sintering at 1450 °C, whereas Al2O3 and SiO2 phases were still detected in the samples milled in the conventional ball mill for 20 h and then sintered at the same conditions.  相似文献   

19.
Several binary stannides of the early transition metals T have been reported with the composition T2Sn3 previously. However, the present structure refinements from single-crystal X-ray data show that they have the compositions VSn2, NbSn2 and CrSn2 (R = 0.028, R = 0.018 and R = 0.021 with 17 variable parameters and 828, 512 and 440 structure factors respectively). Their orthorhombic Mg2Cu-type structure is closely related to the structures of MoSn2 (Mg2Ni type) and CuAl2. The latter structure type was confirmed for NbSnSb by a structure refinement from single-crystal data (R = 0.010 for eight variables and 254 F values). Electrical conductivity measurements show CrSn2 and MoSn2 to be metallic conductors.  相似文献   

20.
Ti3SiC2 was synthesized by pulse discharge sintering 4Ti/2SiC/TiC mixture powder in a temperature range of 1250–1450 °C. The purity of Ti3SiC2 was improved to 92 vol% at a sintering temperature of 1350 °C. The microstructure in the synthesized samples was controlled to be fine, coarse and duplex grains, depending on the sintering temperature and time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号