首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 967 毫秒
1.
用X射线光电子能谱和小掠射角X射线衍射研究了铝合金LY12等离子体基离子注入形成的AlN/TiN改性层的结构。结果表明 ,N和Ti能注入铝合金表面 ,N在注入层呈类高斯分布 ,而Ti沿注入方向呈梯度递减。后注入的Ti和N对先注入的N的含量和分布有重要影响。同时注入Ti和N ,能在试样表面形成一层稳定的Ti,N层。所形成的AlN/TiN改性层主要由TiO2 ,TiN ,TiAl3 ,Al2 O3 ,AlN相组成  相似文献   

2.
用X射线光电子能谱和小掠射角X射线衍射研究了铝合金LY12等离子体基离子注入形成的AIN/TiN改性层的结构.结果表明,N和Ti能注入铝合金表面,N在注入层呈类高斯分布,而Ti沿注入方向呈梯度递减.后注入的Ti和N对先注入的N的含量和分布有重要影响.同时注入Ti和N,能在试样表面形成一层稳定的Ti,N层.所形成的AlN/TiN改性层主要由TiO2,TiN,TiAl3,Al2O3,AlN相组成.  相似文献   

3.
用X射线光电子能谱(XPS)和小掠射角X射线衍射(GAXRD)研究了铝合金LY12等离子基离子注入形成A1N/TiN改性层的成分分布及相结构,在此基础上测量了改性层的纳米硬度,并进行了摩擦磨损试验,结果表明,氮和钛都有效地注入到铝合金里,后注入的元素对先注元素的分布和重要影响,钛,氮同时注入在试样表面形成一层稳定的钛,氧化合层,和未改性试样相经,形成的A1N/TiN改性层纳米硬度及承载能力都提高5倍以上,在低滑动载荷的增加,相应的耐磨性能有所降低,适当的改性层结构及其中分布的TiO2,TiN,TiAl3,Al2O3,AIN等相是性能改善的主要原因。  相似文献   

4.
铝合金等离子体基离子注入形成AlN/TiN层及其耐磨性能   总被引:4,自引:0,他引:4  
用X射线光电子能谱 (XPS)和小掠射角X射线衍射 (GAXRD)研究了铝合金LY12等离子体基离子注入形成AlN/TiN改性层的成分分布及相结构 .在此基础上测量了改性层的纳米硬度 ,并进行了摩擦磨损试验 .结果表明 ,氮和钛都能有效地注入到铝合金里 ,后注入的元素对先注元素的含量和分布有重要影响 .钛、氮同时注入在试样表面形成一层稳定的钛、氮化合层 .和未改性试样相比 ,所形成的AlN/TiN改性层纳米硬度及承载能力都提高 5倍以上 .在低滑动载荷下 ,摩擦系数减小 70 %以上 ,耐磨性提高近 10倍 ,耐磨寿命提高了近 6倍 ,粘着磨损程度显著减轻 .随着载荷的增加 ,相应的耐磨性能有所降低 .适当的改性层结构及其中分布的TiO2 、TiN、TiAl3、Al2 O3、AlN等相是性能改善的主要原因  相似文献   

5.
用X射线光电子能谱(XPS)和小掠射角X射线衍射(GAXRD)研究了铝合金LY12等离子体基离子注入形成AIN/TiN改性层的成分分布及相结构.在此基础上测量了改性层的纳米硬度,并进行了摩擦磨损试验.结果表明,氮和钛都能有效地注入到铝合金里,后注入的元素对先注元素的含量和分布有重要影响.钛、氮同时注入在试样表面形成一层稳定的钛、氮化合层.和未改性试样相比,所形成的AIN/TiN改性层纳米硬度及承载能力都提高5倍以上.在低滑动载荷下,摩擦系数减小70%以上,耐磨性提高近10倍,耐磨寿命提高了近6倍,粘着磨损程度显著减轻.随着载荷的增加,相应的耐磨性能有所降低.适当的改性层结构及其中分布的TiO2、TiN、TiAl3、Al2O3、AIN等相是性能改善的主要原因.,The disfribution of composition and microstructure of the AIN/TiN layer of aluminum alloy 2024 im-planted by Plasma Based Ion Implantation(PBⅡ) were characterized using X -ray Photoelectron Spectroscopy(XPS) and Glancing Angle X -ray Diffraction (GAXRD). XPS results show that N and Ti can be implantedinto 2024 effectively, the content of N presents a Gaussian - like distribution, and that of Ti decreases gradu-ally along the implanted direction from the surface. The post -implanted elements have great influence on thecontent and depth profile of the pre - implanted ones. The simultaneously implanted Ti and N can form asteady layer of Ti and N on the surface. In comparison with 2024, the AIN/TiN layer has remarkably improvedthe mechanical properties, of which both the nano - hardness and the load bearing capacity have in most cases increased over 5 times, the friction coefficient has been decreased more than 70% , wear life has been im-proved near to 6 times, and the wear resistance has enhanced approximately 10 times and the degree of adhe-sive wear has lightened markedly at low sliding loads. Nevertheless, the wear-resistant properties are reducedgradually with increasing the sliding load. The great improvement of the mechanical properties is mainly owingto the proper structure of the layer and the presence of TiO2, TiN, TiAl3, Al2O3, and AIN phases in it.  相似文献   

6.
类金刚石碳膜的结构及其微动磨损行为   总被引:4,自引:0,他引:4  
采用非平衡磁控溅射与等离子源离子注入(PSII)的混合技术,在1Crl8Ni9Ti不锈钢上制备N/Ti,N/TiN/C/DLC多层膜,研究其结构和微动磨损性能,并与N注入层比较。结果表明,N注入层内形成了CrN和Fe3N等氮化物相;多层膜内形成了TiN,Ti2N和CrN等化舍物相。PSII技术能够提高1Crl8Ni9Ti不锈钢的表面硬度,N注入层的硬度约为基体硬度的2.5倍,DLC多层膜的硬度约为基体硬度的4倍。N注入层和DLC多层膜都能够提高1Crl8Ni9Ti的抗微动磨损性,虽然DLC多层膜比N注入层薄,但其抗微动磨损性能更好。  相似文献   

7.
采用单一的表面改性技术难以提高贫铀钛合金(Du-Ti)的耐蚀性能.采用等离子体浸没离子注入技术依次在Du-Ti合金表面注入N和Ti,再利用非平衡脉冲磁控溅射技术制备多层Ti/,TiN,研究了膜层的形貌、结构及耐蚀性能.结果表明:膜层厚约3μm,呈柱状结构,致密,但存在一些微缺陷,膜基结合紧密;膜层出现面心立方结构的TiN和密排六方的Ti,在DU-Ti合金界面形成了少量的UO2,没有铀的氮化物;膜层耐蚀性能较基体得到较大提高;微观缺陷是TiN层局部片状脱落的主要原因,外层TiN出现片状脱落后.注入层和内层Ti/TiN多层膜仍能有效保护基体.  相似文献   

8.
采用化学气相沉积法在35CrMo钢基表面制备TiC/TiN双层、TiC(CN)/TiN和TiC/Ti(CN)/TiN/Al2O3多层硬质涂层,利用扫描电子显微镜、X射线衍射仪、显微硬度计、多功能表面力学性能试验仪和摩擦磨损试验仪测试分析了涂层的组成结构、粗糙度和表面力学性能.结果表明:三种硬质涂层表面较均匀、致密,具有高硬度、低摩擦系数等特点,较大提高了35CrMo钢的耐磨擦磨损性能.相比TiC/TiN双层,多层涂层具有更好的力学和耐磨性能,其中多层TiC/Ti(CN)/TiN的摩擦系数最小,耐磨损性能最好,原因主要归于TC/Ti(CN)/TiN涂层具有较高的显微硬度(2559HV)和良好的膜基界面结合力(70N).  相似文献   

9.
为改善工业纯铁的耐磨抗腐蚀性能,本文采用低偏压高频等离子浸没离子注入及氮化技术(HLPⅢ)对工业纯铁进行表面改性,然后利用非平衡磁控溅射技术(UBMS)在低压高频等离子浸没离子注入及氮化处理样品表面制备Ti/TiN多层膜.研究发现,工业纯铁在3.5kV脉冲电压(频率15.15kHz,占空比25%)下等离子注入及氮化3h后,表面形成了深度达4μm的氮化层,其相结构以ε-Fe_3N和γ-Fe_4N结构为主.等离子氮化及Ti/TiN多层薄膜沉积复合处理后,工业纯铁的硬度、耐磨损性能以及抗腐蚀性能均得到大大提高,等离子注入及氮化形成的氮化层有利于提高Ti/TiN多层薄膜与工业纯铁基体之间的结合力和耐磨性.  相似文献   

10.
传统的阳极氧化技术可以提高铝合金的表面防护装饰性能.为了进一步扩大其应用范围,提高其使用寿命,通过磁控溅射技术,在6063铝合金的表面镀覆了一层(TixAly)N薄膜,利用薄膜测厚仪、显微硬度计、X射线衍射仪以及扫描电镜分别测量和分析了薄膜的厚度、硬度、相组成及表面形态.研究发现,6063铝合金表面镀覆(TixAly)N薄膜,可以明显提高6063铝合金的硬度.主要原因是(TixAly)N薄膜中几个强化相(TiN、AJN、Ti3AlN)硬度较高;与传统的阳极氧化膜相比,(TixAly)N薄膜与基体6063铝合金的结合性能更好,因而具有较高的致密性,有益于6063铝合金抗腐蚀和抗磨损性能提高.6063铝合金镀覆(TixAly)N薄膜后在装饰行业将有广泛的应用前景.  相似文献   

11.
N 和 Ti 注入 TiN 的射程和损伤已在本文中给出。N 和 Ti 注入 TiN 使其颜色发生了变化。试验结果表明,N 和 Ti 注入 TiN 均能使 TiN 的硬度增加.特别是 N 注入使注入层硬度提高更为显著.如5×10~(17)cm~(-2)的 N 注入 TiN,可使 TiN(此时 Ti/N 原子不再是1)的维氏硬度从2600提高到6000.为了分析 N 和 Ti 注入引起 TiN 硬度增加的原因,用 XPS 测量了 N 和 Ti 注入 TiN 所引起化学结构的变化。试验中观察到间隙 N 和 Ti2N 峰的出现.用扫描电镜观察了注入样品磨损后的形貌。据此讨论了 Ti 和 N 注入而引起 TiN 特性变化的机理。  相似文献   

12.
采用辉光弧光协同共放电混合镀方法在A3碳钢基体上沉积氮化钛薄膜,通过改变Ar/N2流量比,研究Ar/N2流量比对TiN薄膜结构及硬度的影响。X射线衍射谱图表明制备的TiN有明显的(111)晶面择优取向;Ti2p的X射线光电子谱谱峰拟合分析表明Ti2p1/2峰和Ti2p3/2峰均有双峰出现,可知氮化物中的Ti存在不同的化学状态,整个膜层是由TiN,TiO2,TiNxOy化合物组成的复合体系,Ar/N2流量比影响各成分的含量。对比硬度的变化和组成成分之间的关系发现,膜层硬度随着含TiN量的增多而增大,当Ar/N2流量比为3∶1时,硬度最大。  相似文献   

13.
介绍了Ti4AlN3陶瓷的结构特点和制备方法.以Ti,Al和TiN粉为原料,采用无压烧结制备的产物来研究Ti4AlN3的相形成机理.利用X射线衍射(XRD)来确定物相,结果表明:合成Ti4AlN3的最佳温度为1 400℃,保温时间的延长有利于Ti4AlN3的合成,过量Al能促进Ti4AlN3的合成,当摩尔配比为n(Ti)∶n(A1)∶n(TiN)=1∶1.2∶1.5时,可以合成纯度较高的TiAlN3.  相似文献   

14.
金属铀的化学性质十分活泼,极易发生氧化腐蚀。本文采用磁过滤多弧离子镀在金属铀表面制备Ti过渡层,然后采用非平衡磁控溅射离子镀技术制备了Ti、TiN单层膜及Ti/TiN多层薄膜,以期改善基体的抗腐蚀性能。采用X射线衍射、极化曲线、盐雾腐蚀试验对镀层的结构、表面形貌、抗腐蚀性能进行了分析。结果表明,采用磁控溅射在金属铀表面制备一层Ti/TiN多层膜后,多层膜界面较清晰,大量的界面可终止柱状晶的生长,细化晶粒,提高镀层的致密性,有效地改善了基体的抗腐蚀性能。  相似文献   

15.
对比了分别经可控渗氮、离子注入形成TiN及可控渗氮 +离子注入Ti2 +后 ,M2高速钢零件(精冲模 )的寿命实验 .结果表明 ,采用可控渗氮 +离子注入Ti2 +的复合处理工艺 ,可使零件的使用寿命获得明显提高 .断口分析、表面硬度测试、金相分析、XRD和AES分析表明 ,寿命的提高是由于 :①用Jonsson经验公式测得的该TiN注入层的真实硬度为HV3 0 0 0 ,TiN的超高硬度是寿命提高的根本原因 .②该复合工艺可使M2高速钢表面TiN注入层获得较厚较硬的氮化过度层 ,增强了膜基间的结合力 ,从而提高了零件的抗磨损和抗冲击性能 .③渗氮层增加了钛离子的注入深度 ,获得了更宽的TiN改性层 ,用JT -PRII所得到的模拟计算结果与此吻合得很好 .  相似文献   

16.
采用低压真空渗氮的方法,在TC4钛合金表面制备了与基体结合良好的改性层.通过金相观察、X射线衍射(XRD)和扫描电镜(SEM)分析了表面改性层的组织结构,并对改性层的显微硬度及耐磨性进了测试.结果表明:TC4钛合金经低压真空渗氮处理后,表面可获得由TiN和Ti2 AlN组成的氮化物改性层,组织均匀致密,氮化物颗粒细小,硬化层与基体结合良好,表面硬度为1100~1200HV,心部硬度为300~320HV,硬化层深度可达60~70μm,硬度梯度平缓,耐磨性优良.  相似文献   

17.
等离子体基离子注入制备TiN膜的成分结构   总被引:1,自引:0,他引:1  
采用Ti、N等离子体基离子注入和先在基体表面沉积纯钛层然后离子注氮混合两种方法在铝合金基体上制备了TiN膜.利用XPS分析了两种方法制备TiN薄膜的成分深度分布和元素化学价态,并用力学性能显微探针测试对比了TiN膜的纳米硬度.研究表明:两种方法制备的薄膜均由TiN组成,Ti、N等离子体基离子注入薄膜中Ti/N≈1.1,而离子注入混合薄膜中Ti/N≈1.3,Ti、N等离子体基离子注入薄膜表面区域为TiN和TiO2的混合组织,TiN含量多于TiO2,离子注入混合薄膜表面主要是TiO2;Ti、N等离子体基离子注入所制备的薄膜的纳米硬度峰值为12.26 GPa,高于离子注入混合的7.98 GPa.  相似文献   

18.
采用连续高功率固体Nd-YA G激光辐照, 使预置于NiTi 合金表面的Ti 粉在N2 环境中形成TiN 增强Ti 基复合材料涂层。选择适当的激光辐照工艺参数, 获得致密的TiN 增强金属基复合材料激光改性层。SEM 观察及EDAX 成分分析结果表明, TiN/ Ti 金属基复合材料表面改性层与基体NiTi 合金存在良好的冶金结合, 界面处成分均匀过渡, 表面Ni 含量极低。显微硬度测试及磨损实验表明, TiN/ Ti 金属基复合材料改性层显著提高了NiTi 合金的表面硬度和耐磨性, 激光表面改性层可有效地改善NiTi 合金作为生物医学材料使用的表面成分和性能。   相似文献   

19.
综述了Ti2AlN陶瓷合成技术的研究进展,详细介绍了Ti2AlN的力学性能和电学性能.已见报道的Ti2AlN陶瓷的制备方法有热等静压法和振动致密化反应合成法.以单质Ti,Al,TiN粉为原料,按摩尔比1:1:1称量后混料,用原位热压的方法合成了Ti2AlN多晶块状材料.X射线衍射分析结果表明,当烧结温度为1000℃时,已经开始形成Ti2AlN相,但仍然有很多未反应的TiN和中间产物TiAl;随着烧结温度的提高,Ti2AlN的衍射峰逐渐增强;当烧结温度在1 300℃时,仅有微弱的TiN衍射峰,产物已经近乎纯的Ti2AlN材料.  相似文献   

20.
郑卓  崔玉友  杨锐 《材料保护》2014,(Z1):32-34
采用氢等离子体-金属反应法(HPMR)在Ar∶H2∶N2=1.0∶1.0∶0.2的气氛下,制备Al3Ti/TiN复合纳米粉。利用X射线衍射仪(XRD)、透射电镜(TEM)、氢氧气体仪、ICP光谱仪和激光粒度仪研究粉末的形貌、组成及粒度分布,分析了纳米粉表面成分。发现纳米粉中主要成分为近球形的Al3Ti和立方体的TiN,平均粒度约为120 nm,Al3Ti和TiN颗粒分布均匀,两相颗粒间相互粘连。近球形的Al3Ti颗粒表面包覆非晶态的Al2O3层,形成核壳结构。TiN颗粒保持立方结构的惯态,纳米粉中含有少量的TiO2吸附的氧。钝化后的复合纳米粉体具有良好的稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号