首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
使用电弧熔炼法制备了La1.1Fe11.4Si1.55Ge0.05合金。研究了用少量的Ge替代Si后,La1.1Fe11.4Si1.55Ge0.05合金的磁性和磁热效应。粉末X射线衍射结果表明:在1273K真空退火处理10d后,合金La1.1Fe11.4Si1.55Ge0.05主相为NaZn13型立方结构,存在微量的α-Fe相。热磁曲线M-T与Arrott曲线表明:在居里温度Tc=205K处发生由铁磁性(TTc)转变为顺磁性(TTc)的二级磁相变。在磁场变化0~1.5T下,根据等温磁化曲线通过Maxwell关系式计算得出最大磁熵变-ΔSmmax=9J.kg-.1K-1。Ge替代Si后该合金在其居里温度Tc处-ΔSm-T曲线半高宽增大,使合金的相对制冷能力RCP(S)有所提高。  相似文献   

2.
通过吸氢、放氢调节La0.8Ce0.2Fe11.44Si1.56Hy合金的居里温度,利用X射线衍射物相分析(XRD)和振动样品磁强计(VSM)测量了合金的相结构和磁性曲线。结果表明:La0.8Ce0.2Fe11.44Si1.56合金吸氢后磁性能稳定,同时由于巡游电子变磁(IEM)转变减弱导致磁滞显著减小,但可以保持较大等温磁熵变。在0~1.5 T外加磁场下La0.8Ce0.2Fe11.44Si1.56Hy合金的最大等温磁熵变可以达到11.3 J·(kg·K)-1,大约是金属Gd的4倍。一定温度下、不同保温时间的放氢工艺可对氢含量进行微调,使La0.8Ce0.2Fe11.44Si1.56Hy合金的居里温度在283~316 K之间可调,而且不会影响合金等温磁熵变的大小,因此通过吸、放氢可以有效的在室温附近调节La0.8Ce0.2Fe11.44Si1.56Hy的居里温度。  相似文献   

3.
《稀土》2017,(4)
用高频悬浮炉制备了La_(0.9)Ce_(0.1)Fe_(11.7-x)Mn_xSi_(1.3)系列合金,在1363 K下退火144 h,退火后的样品在温度为593 K、压力为0.03 MPa的氢气氛围中饱和吸氢。吸氢后的样品磨成粉末,采用粉末粘结的方法制备成块状磁工质。采用XRD及SEM分析了样品的组织结构,观察样品的表面形貌,并用VSM测试样品的磁性能。实验结果表明,随着Mn含量的增加,氢化物的居里温度降低,材料的居里温度在室温范围内连续可调,同时磁热效应有所降低;粘结后的样品具有较大磁热效应,力学性能良好。  相似文献   

4.
通过高频熔炼、高温短时退火及吸氢的方法获得了饱和La_(0.9)Ce_(0.1)Fe_(11.44)Si_(1.56)H_(1.56)含氢合金,对吸氢后的样品进行研磨,采取粉末粘结及压制成型的方法制备出粘结La_(0.9)Ce_(0.1)Fe_(11.44)Si_(1.56)H_(1.56)块状含氢合金。利用扫描电子显微镜(SEM)、万能试验机、振动样品磁强计(VSM)及磁热效应(MCE)直接测量仪对样品的微观结构、力学性能和磁热效应进行了研究。吸氢之后含氢合金样品的Curie温度达到室温附近,但合金经吸氢后沿其晶界碎裂,力学性能下降,不适合磁制冷机的运行环境。在700 MPa的压力下,采用环氧树脂粘结的方法把脆化的含氢合金压制成圆柱状块体。粉末粘结后的含氢合金块体为多孔结构,在不同的颗粒之间存在有大量的孔隙和边界,研磨后粒度0.20 mm的块状含氢合金的最大抗压强度达到205 MPa。在1.5 T的低磁场下,具有比二级相变材料Gd金属和La-Fe-Co-Si-B合金更优异的磁热性能,绝热温变和等温磁熵变的最大值分别达到2.7 K和7.5 J·(kg·K)~(-1),可以作为室温磁工质应用于磁制冷机中。  相似文献   

5.
《稀土》2017,(1)
研究了La_(0.9)Ce_(0.1)Fe_(11.45)Si_(1.55)H_(1.8)合金及其粉末粘结样品的磁热性能,通过在吸氢后粉末化的合金中加入一定量的粘接剂,制备出块状的化合物,利用X射线衍射物相分析(XRD)和振动样品磁强计(VSM)测量了合金吸氢前后的相结构和磁性曲线。研究表明,粘结后的样品主相仍然为NaZn_(13)型立方结构,同时材料中存在少量的杂相α-Fe。氢原子进入晶格间隙导致合金的居里温度明显升高,但氢化物合金及其粉末粘结样品的最大等温磁熵变降低相比吸氢前更明显,一级相变特征减弱。粉末粘结样品的居里温度略微降低于氢化物合金。粘结化合物的最大等温磁熵变相对于氢化物合金也略微降低,但与二级相变金属Gd比仍保持较高的磁热性能。悬浮熔炼的La_(0.9)Ce_(0.1)Fe_(11.45)Si_(1.55)合金经1070℃退火处理144 h后样品居里温度190 K,最大磁熵变为11.82 J/(kg·K),经320℃和0.03 MPa压力吸氢6 h后,居里温度提高到335 K,最大磁熵变为6.7 J/(kg·K)。粘结氢化物在250 MPa压力下成型5 min后,获得样品的最大磁熵变为6.05 J/(kg·K),居里温度为331 K。  相似文献   

6.
通过熔炼炉反复熔炼,然后放入流动氩气退火炉中在1363 K下退火100 h后自由冷却至室温,饱和吸氢得到母合金La_(0.8)Ce_(0.2)Fe_(11.6-x)Mn_xSi_(1.4)H_y(x=0.15,0.2)。最后对其进行等质量塑性粘结得到复合物。XRD相图结果表明母合金的主相均为Na Zn13型立方结构(空间点群为Fm-3c)。由热磁曲线和磁熵变曲线可以明显看出,复合物的温变区间与两母合金相比有所增大,并且在0~1.5 T磁场下其熵变值依然比Gd的要高,最高约为4.05 J/(kg·K)。粘结得到的复合物磁熵变曲线的半峰宽也有所增加。复合物的RCP(S)值与两母合金相比相差不大,而制冷温变区间有所增大。抗压强度测量结果表明粘结复合物具有较好的机械性能,有利于在磁制冷机中应用。  相似文献   

7.
《稀土》2018,(6)
采用热压法及粘结法制备了La_(0. 8)Ce_(0. 2)Fe_(11. 47)Mn_(0. 23)Si_(1. 3)H_(1. 8)磁工质,研究了两种方法制备出的样品的性能,对样品的相结构、微观形貌以及磁热性能等进行了研究。研究结果表明在1. 5 T磁场下,粘结样品的最大等温磁熵变为11. 8 J/(kg·K),比热压样品的最大磁熵变高(10. 99 J/(kg·K)),但热压样品的抗弯强度和热导率均高于粘结样品。  相似文献   

8.
在高温(1170℃)下对LaFe11.2Co0.7Si1.1B0.2合金进行0h,1h,3h,6h,24h和72h热处理,测量了其磁热效应,并利用XRD和SEM进行结构和相组织分析。结果表明合金铸态以α-Fe相为主,随着热处理时间增加,α-Fe相逐渐减少,而NaZn13相(1∶13相)增加,时间太长(72h)α-Fe相组织变大;磁热效应T-ΔTad曲线峰值也随着时间增加,在6h时达到最大值,之后下降,而居里点有所升高。  相似文献   

9.
为了研究急冷对储氢合金残余氢量的影响,利用真空电弧熔炼炉和铜模喷铸制备了Ti_(0.32)Cr_(0.345)V_(0.25)Fe_(0.03)Mn_(0.055)合金,采用XRD、PCT(压力-容量-温度)、TG/DTA等手段分析了急冷对储氢合金吸放氢性能的影响。结果表明,铸态合金和急冷合金均由BCC固溶体主相和Laves第二相组成;急冷对首次吸氢动力学行为影响较大,由铸态时的化学反应控制变为急冷时的新相晶核形成长大控制;急冷后,合金吸放氢平台压得到提高,且吸氢起始点左移,但吸放氢滞后性增大。TG/DTA曲线表明,急冷并没有改变合金的残余氢量,但氢化物放氢温度升高。  相似文献   

10.
通过电弧炉熔炼法制备了LaFe11.4Si1.6-x P x(x=0.05,0.1,0.2,0.3)系列合金,XRD分析表明少量P元素替代,LaFe11.4Si1.6-x P x(x=0.05,0.1,0.2和0.3)合金仍然保持NaZn13型结构,但晶格常数减小。在居里温度T c附近磁化曲线表明,该系列合金经历由磁场引起巡游电子由顺磁态到铁磁态变磁转变的一级相变。随着P含量的增加,LaFe11.4Si1.6-x P x(x=0.05,0.1和0.2)的居里温度T c减小,等温磁熵变也减小。在外加磁场变化为0~1.5 T时,等温磁熵变最大值分别为19.3 J/(kg·K),15.3 J/(kg·K)和10.3 J/(kg·K)。  相似文献   

11.
利用激光多普勒法测量50 Hz下非晶合金带材的磁致伸缩曲线,研究了磁场退火对Fe_(80)Si_9B_(11)非晶合金带材的磁致伸缩特性的影响。结果显示,在相同的磁场强度下非晶带材经横磁退火后磁致伸缩最大,无磁场退火次之,纵磁退火时最小。然后,采用Kerr方法观察了非晶合金带材的磁畴形貌,从微观结构上解释了经不同磁场退火后磁致伸缩大小不同的机理。最后,对无磁场退火、横磁退火和纵磁退火后的Fe_(80)Si_9B_(11)铁基非晶合金铁芯进行了噪音测试。结果显示,在相同的频率和磁通密度下,非晶合金铁芯经横磁退火后噪音最大,无磁场退火次之,纵磁退火时噪音最小,与非晶合金带材经不同磁场热处理后磁致伸缩大小的规律一致。为解决非晶合金铁芯在实际应用中的噪音问题提供了参考。  相似文献   

12.
《稀土》2015,(2)
采用筛分法测试了La0.75Mg0.25Ni3.3Co0.5储氢合金粉的粒度分布。结果表明,随着合金颗粒度减小,相应颗粒度的合金含量(质量分数)几乎呈线性增加,从合金颗粒度为58μm时的21%增加到38μm时的29%。同时,选用不同颗粒度的La0.75Mg0.25Ni3.3Co0.5合金粉制备了储氢合金电极,研究了合金颗粒度对储氢合金电极的活化性能、最大放电容量、放电特性以及循环稳定性的影响规律与机制。研究表明,合金颗粒度的大小对合金电极的活化性能基本无影响,合金电极均具有好的活化性能,经1至2个循环后达到最大放电容量。随着合金颗粒度的减小,合金电极的最大放电容量持续增加,从合金颗粒度为58μm时的332.5 m Ah·g-1增加到38μm时的最大值342.9 m Ah·g-1;放电中值电位先降低后升高,由合金颗粒度为58μm时的1.0302 V减小到45μm时的0.9825 V,然后增加到38μm时的1.0141 V;容量衰减速度呈现出先变慢后加快的变化规律。综合比较,在合金颗粒度为48μm时,La0.75Mg0.25Ni3.3Co0.5储氢合金电极展示了最佳的综合电化学性能,电化学性能的改善主要归因于合金电极电荷转移速度的加速和内阻的减小。  相似文献   

13.
从室温磁制冷商品化角度出发,用工业纯原料,对用不同工艺(甩带、铸锭)制作的LaFe11.9-xCoxSi1.1B0.25(x=0.7,0.8)合金的磁热效应作了研究.研究结果表明,铸锭样品的磁热效应优于甩带样品,在1.5T磁场下,铸锭LaFe11.2Co0.7Si1.1B0.25样品的温变最大值达到2.6K,对应的温度在-6℃左右.随着Co的加入,居里温度升高,但磁热效应有所降低.  相似文献   

14.
采用感应熔炼法制备La_(0.53)Ce_(0.47)Ni_(3.4)Co_(0.6)Mn_(0.3)Cu_(0.1)储氢合金,并在不同温度下进行热处理,通过XRD对其相组成及结构进行表征,并采用双电极模拟电池测试系统对其储氢性能进行测试与分析。结果表明,随着退火温度的升高,合金的相组成未发生变化,但其晶化程度逐渐增高,晶体缺陷和晶格应力逐渐减少。热处理改善了合金的循环稳定性,提高了合金的电化学容量,但恶化了高倍率放电能力。  相似文献   

15.
LaFeCoSi基合金中添加少量Cr、Ti元素,使其形成LaFe11.1-xCrxCo0.8Si1.1B0.25、LaFe11.1-xTixCo0.8Si1.1B0.25系列合金,利用磁热效应直接测量仪在1.5T的磁场下进行测量。实验结果表明:添加Cr、Ti元素都对材料的居里温度、磁热效应有影响,可利用这些合金元素在一定程度上调节材料的性能。  相似文献   

16.
《稀土》2016,(3)
利用X射线衍射仪(XRD)和VSM测量La_(1-x)Ce_xFe_(11.44)Si_(1.56)合金吸氢前后的相结构及磁性曲线,利用DSC测量了La_(0.8)Ce_(0.2)Fe_(11.44)Si_(1.56)Hy的热重曲线。结果表明,La_(1-x)Ce_xFe_(11.44)Si_(1.56)合金及其氢化物的主相均为NaZn_(13)型立方结构,吸氢后合金的居里温度明显升高,在室温空气中放置一段时间后,仍能保持良好的稳定性;La_(0.8)Ce_(0.2)Fe_(11.44)Si_(1.56)Hy合金约从483 K到708 K一直处于失重状态,氢化物的失重率为0.19%;通过提高放氢温度,La_(0.9)Ce_(0.1)Fe_(11.44)Si_(1.56)Hy合金的居里温度降低,放氢温度每提高10 K居里温度下降10 K左右,但对合金的等温磁熵变影响很小,熵变最小的样品与无放氢样品的熵变相差仅0.616 J/(kg·K)。  相似文献   

17.
研究了LaGd0.1Fe11.4-xCoxSi1.6(x=0.1,0.3,0.5,0.7,0.9)系列合金的结构以及磁热效应。室温XRD分析表明该系列合金除微量的α-Fe相外,均具有立方NaZn13型立方单相晶体结构,空间群为Fm-3c。晶格常数没有明显变化,分别为1.1458,1.1454,1.1458,1.1459,1.469nm。磁性测量表明该系列合金的Tc随着Co含量的增加而增加,分别为212,231,253,281,302K。在外磁场变化ΔB=1.5T时,最大的磁熵变随着Co含量的增加而减少,由x=0.1的13.8J降为x=0.9J.kg-.1K-1的1.5J.kg-.1K-1。并且随着Co含量的增加存在由一级相变转为二级相变的趋势。  相似文献   

18.
田娜  杨坤  刘晶  游才印 《稀土》2014,(5):69-72
利用X射线衍射及磁性测量分析,研究了LaFe11.5Si1.5粉末样品的相结构和磁性能。结果表明,合金主相具有NaZn13型结构,有少量α-Fe和LaFeSi杂相。随粉末粒径降低,样品的磁滞损失减小,粒径大于110μm的LaFe11.5Si1.5颗粒的磁滞约为4.44 J/kg,而小于30μm的LaFe11.5Si1.5的磁滞为2.31 J/kg。同时还观察到低温退火处理也能够降低颗粒的磁滞损失。降低LaFe11.5Si1.5系合金的颗粒尺寸和低温退火均有利于获得小的磁滞损失。  相似文献   

19.
主要研究了Tb对Fe-Ga合金的磁致伸缩性能影响。添加Tb后,Fe-Ga合金具有100晶向取向的晶粒数目有所增加,使磁致伸缩性能有了明显的提高。研究了Tb在Fe-Ga合金中的存在位置,Tb原子在合金的晶界处富集。  相似文献   

20.
采用机械合金化和冷压微波烧结法制备了Cu_(20)Fe_(80)合金,研究了La_2O_3添加对Cu_(20)Fe_(80)合金组织性能的影响,利用扫描电子显微镜和X射线衍射仪等设备观察和分析Cu_(20)Fe_(80)合金组织形貌和相组成,并测定了合金的致密度和硬度。结果表明:Cu_(20)Fe_(80)合金粉体呈层片状,随La2O3质量分数的增加,合金粉体得到细化,机械合金化程度增强;Cu_(20)Fe_(80)合金粉体的冷压压坯组织呈层片状,随La_2O_3质量分数的增加,压坯致密程度和成型性提高;微波烧结后组织呈现层片状,随La_2O_3质量分数的增加,空隙先减少后增加,烧结组织致密度和硬度先提高后减小;综合分析,La_2O_3最佳添加量为0.2%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号