首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
为研究分扭-并车齿轮传动系统非线性分岔特性,建立了含多间隙的分扭-并车齿轮系统非线性动力学模型,引入高斯消元技术和广义相对位移变量消除了系统的刚体位移,并对动力学方程组实施了量纲一化处理。综合考虑啮合频率、齿侧间隙、综合传动误差和阻尼比等激励下的分岔通道,借助分岔图、Poincaré截面和Lyapunov指数等手段对系统的分岔行为进行了定性和定量表征。结果表明啮合频率增大时系统发生逆向倍周期分岔,分岔点位置受齿侧间隙影响显著;齿侧间隙和综合传动误差变化下混沌域内均出现短暂周期窗口;阻尼对倍周期分岔运动存在抑制作用,其结果对该类齿轮系统动力学设计具有参考价值。  相似文献   

2.
考虑牵引电机扭矩变化和轮轨黏着力波动等外部激励,以及齿侧间隙、时变啮合刚度和传递误差等内部激扰,采用集中质量法建立了某和谐号机车直齿齿轮传动系统的动力学模型。利用数值方法求解了电机扭矩变化时齿轮传动系统的动力学响应。结合分岔图、相平面图、庞加莱截面图、时间历程图、频谱图,分析了电机扭矩变化对系统非线性特性的影响规律,揭示了系统由单周期、多周期到混沌运动的非线性动力学演化机理。  相似文献   

3.
为了考察输入力矩的随机扰动对系统动力学的影响,综合考虑由扭矩波动引起的低频外激励、齿轮阻尼比、齿侧间隙、激励频率和啮合刚度的随机扰动因素,根据牛顿定律建立单对三自由度直齿齿轮传动系统的随机动力学方程。利用系统的分岔图、相图、时间历程图、Poincaré 映射图、李雅普诺夫指数和功率谱图分析齿轮传动系统在齿轮激励频率变化下的动力学特性,并分析输入力矩引起的随机外扰动对系统分岔特性的影响。数值仿真表明:随机非光滑齿轮传动系统存在着丰富的倍周期分岔现象;随着齿轮激励频率的增大,齿轮传动系统先通过周期倍化分岔从周期运动到混沌运动,再通过逆周期倍化分岔从混沌运动通向周期运动;随着输入力矩随机扰动的增大,会对系统的随机分岔区域和系统动力学特性产生本质影响。  相似文献   

4.
为研究齿轮传动系统中齿侧间隙等非线性因素对系统振动特性的影响,综合考虑齿侧间隙、时变啮合刚度、综合啮合误差和轴承纵向响应,建立了三自由度单级直齿轮副传动系统的扭转振动非线性动力学模型;采用变步长4-5阶Runge-kutta法,对系统运动的状态方程进行了数值求解;并构建了系统的Poincaré截面,得到了系统的分岔图。结合系统最大Lyapunov指数谱、Poincaré映射图及FFT频谱图,分析了系统在激励频率变化时的动力学特性,发现系统在不同激励频率下会发生Hopf分岔、鞍结分岔及倍化分岔,给出了系统的分岔值,分别得到了系统经Hopf分岔和鞍结分岔通向混沌运动的两种过程。  相似文献   

5.
建立了某设备两级行星齿轮传动系统非线性纯扭转动力学模型,模型在综合考虑时变啮合刚度、齿侧间隙与综合啮合误差等强非线性因素的基础上,推导出系统在广义坐标下的量纲一动力学方程,并采用数值积分方法对方程组进行求解,得到了系统的非线性动态响应结果,综合运用分岔图、相空间轨线和Poincáre截面研究了激励频率、啮合阻尼比对系统分岔与混沌特性的影响。结果表明:多级行星轮系在高速轻载工况下,由于齿侧间隙与时变啮合刚度等非线性因素的耦合作用使其具有丰富的非线性动力学特性;系统随激励频率的变化出现简谐运动、非简谐周期运动、拟周期运动和混沌运动等多种运动状态;系统通过Hopf分岔等多种途径由周期运动进入混沌运动;增大系统啮合阻尼比可使系统复杂运动状态区间缩小,稳定周期运动状态区间扩大。  相似文献   

6.
为研究齿轮传动系统中齿侧间隙等非线性因素对系统振动特性的影响,综合考虑齿侧间隙、时变啮合刚度、综合啮合误差和轴承纵向响应,建立了三自由度单级直齿轮副传动系统的扭转振动非线性动力学模型;采用变步长4-5阶Runge-Kutta法,对系统运动的状态方程进行了数值求解;构建了系统的Poincaré截面,得到了系统的分岔图。结合系统相图、Poincaré映射图及FFT频谱图,分析了系统在激励频率变化时的动力学特性,发现系统在不同激励频率下会发生Hopf分岔、环面倍化、擦切分岔及倍化分岔。  相似文献   

7.
《机械传动》2016,(10):114-121
为探究地铁不同车速阻尼对传动系统非线性动力学响应的影响,建立地铁斜齿轮弯-扭-轴动力学模型,模型考虑了齿轮副啮合过程中产生的时变啮合刚度、啮合误差以及间隙非线性等系统参数,以及地铁运行工况下的外部参数。通过对六自由度系统微分方程的无量刚处理以及方程归一化,运用变步长四阶Runge-Kutta数值积分法对齿轮动力学模型进行数值分析,获得齿轮系统动态响应状态图。借助时间历程图、相平面图、庞加莱截面图和分岔图等系统状态判定标准,定性分析系统激励频率、啮合阻尼比变化下系统周期运动、拟周期运动、分岔和混沌运动等的演化历程。结果表明,当地铁高速运转、啮合阻尼比大时斜齿轮传动系统运动稳定。最后通过实验验证了其正确性。  相似文献   

8.
建立了行星齿轮-转子系统的非线性动力学模型,系统模型将内啮合刚度嵌入齿圈刚度进行建模,考虑了转子扭转效应、齿侧间隙、时变啮合刚度和综合传动误差等因素.采用分岔图、最大李雅普诺夫指数(LLE)、庞加莱截面图和相图来分析响应特征.研究齿轮与转子间扭转振动位移响应,分析了旋翼轴与传动轴扭转刚度比变化影响规律.研究发现,系统具有非线性动力学特性,通过准周期分岔和倍周期分岔进入混沌运动,获得了系统避免失稳的刚度比阈值区间.研究为直升机主减速器行星齿轮-转子系统的动力学设计和扭转振动控制提供了参考.  相似文献   

9.
《机械传动》2016,(2):19-22
在考虑直齿轮各零件部件基础上,建立了三自由度齿轮传动系统动力学模型。借助数学软件MATLAB,利用Runge-kutta法对所构建的齿轮动力学方程进行求解,得到其动力学响应曲线,并分析了齿轮传动系统在激励频率变化下的分岔与稳定性。通过分析发现了强非线性齿轮传动系统存在着复杂的分岔结构和普适规律,为深入研究齿轮系统非线性动力学行为提供参考。  相似文献   

10.
为研究齿面摩擦对直齿圆柱齿轮传动系统振动特性的影响,建立了包含齿面摩擦在内的六自由度齿轮啮合耦合型动力学模型。模型采用能量法计算齿轮啮合的时变啮合刚度,同时考虑了啮合误差、间隙非线性以及负载扭矩等因素。通过四阶变步长Runge-Kutta积分法对模型进行数值分析,得到齿轮系统随齿面摩擦系数变化下的时间历程图、相位图、Poincare截面图、分岔图等,定性分析了齿轮系统对齿面摩擦变化下的动力学周期、拟周期、分叉和混沌的运动演化历程,并通过实验进行了验证。结果表明,随着齿面摩擦系数的增大,齿轮系统动态特性响应逐渐复杂。  相似文献   

11.
为了分析功率二分支齿轮传动系统的动力学特性,构建由斜齿分扭传动级与人字齿并车传动级构成的分扭 并车纯扭转动力学模型;通过高斯消元去除状态方程中的冗余变量,解决了系统动力学方程的奇异性并采用 4 阶 Runge-Kutta 法数值求解;分析了无量纲时间下不同齿型构成的 2 级传动动载特性,采用模态分析法,确定该系统的固有频率与固有振型,并结合三维瀑布图分析激振频率对系统共振特性的影响。研究结果表明:该齿轮传动系统由人字齿构成的并车传动级动力学特性优于由斜齿构成的分扭传动级;系统啮合位移与动态啮合力响应瀑布图表明,在该系统激振频率为 1820 Hz 时,系统出现超谐波共振。  相似文献   

12.
齿面侧隙和时变啮合刚度等因素的存在,将导致弧齿锥齿轮传动系统在工作过程中呈现典型的非线性特性;置于转子上的弧齿锥齿轮传动系统被等效处理为8自由度动力学模型,借助动态相对传动误差,使两轮转动自由度合并,建立了7自由度的非线性振动方程。采用A算符算法获得了不同工况下弧齿锥齿轮系统的扭转、横向及轴向的振动位移和速度,发现随着啮合频率的变化,系统经倍周期分岔进入混沌,而随着支承刚度的变化,系统经拟周期分岔进入混沌振动,在啮合频率的变化过程中,系统存在跳跃现象。  相似文献   

13.
肖乾  程玉琦  许旭 《机械传动》2021,45(4):135-141
为了分析高速列车齿轮传动系统在轨道不平顺激励影响下的振动特性变化规律,利用动力学软件SIMPACK建立包含齿轮传动系统的整车动力学模型,分别在大、小齿轮内部布置测点,进行无轨道不平顺和有轨道不平顺工况下的动力学仿真实验,获得高速列车时速250 km/h时大、小齿轮的振动加速度。对大、小齿轮横向、纵向和垂向振动加速度幅值进行频域分析,并对比分析了齿轮传动系统在有、无轨道不平顺工况的振动幅值、频谱分布。结果表明,由于轨道不平顺激励的影响,高速列车齿轮传动系统的横向、纵向和垂向振动加强,振动加速度均增幅明显,其中,垂向振动加速度变化幅值最大。齿轮传动系统的振动频率主要集中在0~400 Hz,小齿轮和大齿轮横向振动受轨道不平顺的影响规律一致,但小齿轮受到纵向振动的影响略小于大齿轮,小齿轮受到垂向振动的影响略大于大齿轮。  相似文献   

14.
钢/塑料齿轮组合行星传动的固有特性分析   总被引:3,自引:0,他引:3  
建立了钢/塑料齿轮组合行星传动的纯扭转动力学模型;对8种钢/塑料齿轮组合行星传动的固有特性进行了研究,分析了组合方式对行星传动结构的固有频率、振型及模态动能的影响;研究了温度对组合行星传动一阶固有频率的影响.研究结果表明:组合方式对行星齿轮传动结构的固有特性影响显著;随着温度的升高,钢/塑料齿轮组合行星传动的固有频率下降,可能会出现温共振现象.  相似文献   

15.
直升机传动系统轴系结构复杂,轴系的相对位置变化将影响整个传动系统传递特性,文中以某型直升机尾传动系统——轴系相互垂直的螺旋锥齿轮系为对象,开展轴系相对位置变化下齿轮对啮合力变化特性研究。通过建立尾传轴系相对位置变化的动力学模型,结合多体动力学软件,仿真分析了不同轴系相对位置变化量、不同载荷、不同转速下,齿轮副啮合力变化规律。结果表明:平均啮合力随偏移位置增大而减小,随倾斜位置增大而增大;轴系的倾斜位置变化较偏移位置变化对齿轮啮合特性影响更大。本研究为直升机尾传动系统运行状态监测提供理论依据,对提高直升机传动系统运行稳定性,确保其安全高效运行等有着重要意义。  相似文献   

16.
A new analytical model of a spur gear system with sliding friction is presented. Unlike previous models, the excitation consists of two parts: the rotational driving speed of the pinion and the drag torque acting on the gear. The proposed model was validated with the finite element model. Using numerical method, the steady state resolutions was obtained to mainly demonstrate the nonlinear characteristics under both constant and variable excitations. The results obtained illustrate that sliding friction could introduce additional vibration. Moreover, the sliding friction even could decrease the dynamic transmission errors under proper operation condition. Further, the bifurcation diagram was plotted to show the influence of the rotational driving speed of the pinion on the dynamical characteristic of the gear system. Finally, the fluctuated excitation was used to exhibit their different effects on the gear system, which should form the basis of further analytical and experimental work in the gear dynamic area.  相似文献   

17.
粉末冶金斜齿轮系统振动频率响应分析   总被引:3,自引:0,他引:3  
利用有限元法建立包含齿轮副、传动轴、轴承和箱体的齿轮系统完整的动力学模型。使用有限元分析软件 MSC.Nastran计算了在齿轮动态激励下粉末冶金斜齿轮系统的振动响应,并与38CrMoAl刚性齿轮系统进行比较。  相似文献   

18.
目前,研究磨损对齿轮动力学特性的影响大多采用传统的Archard磨损模型,并未考虑齿轮的润滑特性,且主要研究对象多为直齿轮。为了弥补斜齿轮研究方面的不足,数值模拟了混合弹流润滑状态下斜齿轮的磨损过程,建立了一个8自由度斜齿轮动力学模型,研究齿面磨损对斜齿轮动态特性的影响。在斜齿轮试验台上进行了齿轮疲劳试验,对数值仿真结果进行验证。结果表明,齿面磨损主要发生在靠近齿根和齿顶部分,且由于齿根处较高的滑滚比导致其磨损更加严重。根据齿轮啮合频率及其谐波幅值的变化可知,磨损导致齿轮的振动增加。试验分析与数值仿真有较好的一致性,说明该研究可以为斜齿轮磨损的预测和故障诊断提供可靠的理论依据。  相似文献   

19.
为研究变速器齿轮传动系统的敲击振动特性,专门设计了一台只包含两个档位的试验变速器。以该试验变速器为研究对象,综合考虑各零部件连接关系、齿轮内部动态激励、发动机转速波动和负载激励、轴承刚度阻尼特性以及箱体的柔性化特性,运用LMS virtual lab软件建立变速器的刚柔耦合多体动力学模型,分析了变速器齿轮系统敲击的产生条件并给出敲击时间历程与各影响因素的理论表达式,最后基于刚柔耦合模型对敲击各影响因素进行系统的分析研究。研究结果表明,通过合理地设计齿轮系统参数可以把敲击控制在理想范围内。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号