首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用原位熔铸法制备了不同TiC添加量以及不同碳源(碳粉末、碳纤维和碳纳米管)的TiC/Ti复合材料,研究了TiC添加量和碳源种类对铸态和锻态TiC/Ti复合材料显微组织的影响,并对不同碳源制备的铸态和锻态复合材料进行了断裂韧性和室温压缩性能测试。结果发现,TiC/Ti复合材料主要由α-Ti和TiC组成;α片层宽度随着TiC体积分数的增加逐渐下降,TiC呈条状或片状。经过锻造,TiC呈近等轴状,α片层进一步细化。以碳粉末作为原位反应碳源制备的铸态TiC/Ti复合材料,断裂韧性较高,以碳纤维和碳纳米管作为碳源时,断裂韧性较低;以不同碳源制备的铸态复合材料,室温抗压强度和屈服强度无明显差异。  相似文献   

2.
采用原位熔铸法制备了不同TiC添加量以及不同碳源(C粉末、C纳米管和C纤维)的TiC/Ti复合材料,研究了TiC添加量和碳源种类对铸态和锻态TiC/Ti复合材料显微组织的影响,并对不同碳源制备的铸态和锻态复合材料进行了断裂韧性和室温压缩实验。结果发现,TiC/Ti复合材料主要由α-Ti和TiC组成;α片层宽度随着TiC体积分数的增加逐渐下降,TiC呈条状或片状。经过锻造,α片层扭折,TiC呈近等轴状。在引入的碳源中,添加C粉末作为原位反应碳源制备的铸态TiC/Ti复合材料的断裂韧性最高,C纳米管次之,碳纤维最低;室温抗压压缩强度和屈服强度的大小与断裂韧性趋势相反。经过锻造,断裂韧性整体下降;室温抗压强度和屈服强度整体提高。  相似文献   

3.
陈敏  张雪峰 《钢铁钒钛》2019,40(5):44-49
结合BSE显微组织观察、EDS能谱分析、XRD物相检测和密度、硬度、抗弯强度测试,研究了VC添加量在不同烧结温度下对TiC基金属陶瓷显微组织和力学性能的影响。研究表明:TiC基金属陶瓷显微组织中的芯相和环相具有相同的晶体结构。随着VC含量的增加,TiC基金属陶瓷显微组织中的环相有粗化的趋势,烧结温度提高时环相粗化明显。当烧结温度为1 340℃,VC添加量为4%时,TiC基金属陶瓷的综合性能较佳。  相似文献   

4.
本文研究了烧结温度对TiC/Cu复合材料组织和性能的影响,研究结果表明,随着烧结温度的升高,骨架密度增加;渗Cu试样随着骨架密度的增加,硬度增加,而抗弯强度降低,低骨架密度TiC/Cu复合材料的抗弯显微断口有明显的韧窝,呈伪韧性断口形貌.  相似文献   

5.
采用放电等离子烧结技术制取不同TiC含量的WC-8Co硬质合金。分析了TiC含量对WC-8Co基硬质合金刀具材料的致密度、力学性能和微观组织的影响。实验结果表明,随着TiC含量增加,WC-8Co硬质合金常温综合力学性能先提高后降低,添加5%(质量分数)TiC的WC-8Co硬质合金具有较好的综合力学性能。当烧结温度和压力分别为1 250℃、50 MPa时,WC-5TiC-8Co硬质合金材料致密度、维氏硬度、断裂韧性以及室温下的抗弯强度分别达到98.85%、19.49 GPa、9.46 MPa·m1/2和1 893 MPa。硬质合金致密化烧结曲线和组织显微形貌的分析结果表明,随着TiC含量增加,硬质合金的致密化烧结的起始温度向更低的温度偏移,Co相流动性变差,从而导致致密化烧结条件变差。试样中孔隙增多,是硬质合金维氏硬度和力学性能下降的主要原因。  相似文献   

6.
TiC粒子增强钛基复合材料的显微组织与性能研究   总被引:1,自引:0,他引:1  
探讨了添加粒子的形态对熔铸法制备的TiC粒子增强钛基复合材料力学性能与显微组织的影响。研究采用的TiC粒子增强的钛基复合材料是用预处理熔炼法 (PTMP)工艺制备的。将二次真空自耗电弧熔炼的铸锭用常规方法锻造成Φ13mm左右的棒材 ,在其上切取拉伸试样和蠕变试样 ,在 80 0~ 10 5 0℃温度范围内热处理 1h ,空冷。测试复合材料的室温和高温拉伸以及蠕变性能。研究结果表明 ,TiC粒子在基体分布均匀 ,添加尺寸为 5 μm以下的球形或近似球形TiC粒子时 ,粒子增强的钛基复合材料的综合性能优异 ,具有良好的热强性与室温塑性匹配 ,直至 65 0℃ ,复合材料仍具有良好的综合机械性能  相似文献   

7.
TiB2对TiC基金属陶瓷显微组织的影响   总被引:2,自引:0,他引:2  
研究了TiB2对TiC基金属陶瓷显微组织的影响。试验发现1420℃下烧结90min后,TiC基金属陶瓷的硬质相颗粒明显长大。分析表明,TiB2在高温下能够与TiC基金属陶瓷中的Mo反应生成MoB,并主要分布于硬质相表面的环形相中。硬质相的长大可能与MoB导致的液相不足和硬质相颗粒接触长大有关。  相似文献   

8.
以Ti-47.5Al-2.5V-1.0Cr合金粉末为原料,采用放电等离子烧结工艺制备出TiAl基合金,并研究了制备工艺、显微组织与室温力学性能三者的关系.结果表明,采用放电等离子烧结方法可制备出致密度高、组织均匀的TiAl基合金.烧结温度对合金的显微组织影响显著,且其室温力学性能与显微组织密切相关,显微组织越细小,室温强度和塑性越高.当烧结温度为1100℃时,制备出的TiAl-V-Cr合金显微组织类型为细小双态组织,具有35.2%的压缩率和3321MPa的断裂强度,显示出较好的室温压缩性能.  相似文献   

9.
通过微波烧结法制备TiC/6061铝基复合材料,研究增强相含量对铝基复合材料显微组织和性能的影响。结果表明:增强相TiC加入后可在一定程度上抑制基体晶粒长大,且随TiC含量增多,基体组织的熔合程度提高。增强相为块状和少量长条状组织,并证实长条相为TiAl金属间化合物。在本研究条件范围内,当TiC含量为30%(质量分数)时,TiC/6061铝基复合材料的硬度可达195 HV0.1,抗压强度462 MPa,屈服强度241 MPa。  相似文献   

10.
塑性变形在提高原位自生非连续增强钛基复合材料(DRTMCs)强度的同时可改善塑性,但高的屈强比使其变形工艺非常敏感,压缩了适合变形的工艺区间,加大了变形加工难度。为此,提出了钛基复合材料(TMCs)等温挤压方法并成功制备出强塑性匹配较好的颗粒增强TMCs,研究了挤压变形量对其微观组织演化及综合性能变化规律的影响。结果表明,挤压过程中增强体TiB晶须和TiC颗粒断裂并实现二次分布,使TMCs中增强体分布得到合理有效控制,当挤压比从7增大到10时,TiB晶须长径比明显减小,但随后趋于稳定。随着变形量增加,α相内发生连续动态再结晶,形成与片层厚度相当的沿着原始片层呈竹节排布的细小等轴晶粒。从力学性能测试结果可知,在温度较低的两相区(985℃)进行等温热挤压变形,DRTMCs强度可达1 111 MPa,延伸率为15.7%,实现了较好的强塑性匹配。  相似文献   

11.
TiC复合添加剂是经SHS方法,在TiC表面包覆一层能与铁良好结合的金属,加入铁基粉末冶金结构材料中,在常规压制密度(68~70g/cm3)及固相烧结条件下,TiC能与基体良好结合,作为硬质相能有效提高材料烧结及淬火后的力学性能。本文探索研究了多种TiC复合Fe,Ni,FeMo的添加剂,在常规工艺条件下对铁基粉末冶金结构材料力学性能的影响。  相似文献   

12.
为获得一种力学性能和阻尼性能俱佳的材料,在7050Al合金基体中加入4%(体积分数)的石墨(Gr)作为增阻体,用包套挤压的方法制备7050Al/Gr复合材料,研究石墨的加入对7050A1合金组织和力学性能的影响。结果表明加入石墨后,时效过程中沉淀相析出长大速率加快,峰时效时间提前约4h,峰时效强度和硬度都有所降低。7050A1/Gr复合材料峰时效强度(吼)和硬度(HB)分别为521MPa和152,而7050Al合金峰时效强度和硬度分别为558MPa和158。  相似文献   

13.
凝固速度对金属基复合材料组织和力学性能的影响   总被引:7,自引:0,他引:7  
储双杰  吴人洁 《稀有金属》1997,21(1):58-63,67
系统介绍了凝固速度对金属基复合材料组织和力学性能的影响,颗粒增强金属基复合材料凝固过程中,固/液界面向前推移时,存在某一临界速度,当实际凝固速度大于临界速度时,颗粒被固-液界面裹入,从而使颗粒在基体中均匀分布,临界速度的大小是地强颗粒的尺寸及含量,凝固界面前沿的温度梯度,凝固速度,界面的表面张力,材料的熔化潜热,导热性和粘滞系数等多种因素的函数。同时,凝固速率强烈地影响金属基复合材料的显微组织,随  相似文献   

14.
研究了固溶时效热处理对多向锻造TiBw/Ti复合材料组织和力学性能的影响。实验表明:当固溶温度为950℃时,复合材料的基体为双态组织,TiBw沿初生α相分布;固溶温度为1050℃时,等轴α相转化为片层α相和α集束,β晶界出现,TiBw沿β晶界分布;固溶温度为1150℃时,复合材料的基体组织为魏氏组织,β晶界进一步扩大,α集束更加细长,TiBw沿β晶界或α集束分布。经热处理后,TiBw/Ti复合材料的室温抗拉强度和屈服强度随着固溶温度升高而增加,但室温塑性呈现相反趋势。  相似文献   

15.
采用混合粉热压工艺制备了FcAl/TiC复合材料。研究了TiC含量、粘结相成分以及反应热压工艺对致密化过程和力学性能的影响。研究结果表明:复合材料的密度随TiC含量增加而减小;硬度和抗弯强度随TiC体积分数增加而出现峰值,增加Al含量有利于致密化,但因引入过多的氧化夹杂和热空位会导致力学性能降低;热压温度和压力等工艺参数也对材料的性能有影响。  相似文献   

16.
MoS2对铁基摩擦材料烧结行为及力学性能的影响   总被引:4,自引:0,他引:4  
MoS2作为润滑组元广泛应用于粉末冶金摩擦材料中.采用X射线衍射和能谱微区成份分析的方法,深入系统地探讨了铁基摩擦材料中MoS2的烧结行为,同时研究MoS2对这些材料力学性能的影响.结果表明:在烧结过程中,铁基摩擦材料中MoS2会分解为S与Mo,且分解后的S、Mo活性很大,与材料中其他组元相互作用,或产生液相,促进烧结致密化过程;随MoS2质量分数从0增加到8%,材料的物理-力学性能先升高后降低,MoS2含量为4%的材料性能最佳.  相似文献   

17.
采用粉末冶金法制备SiC颗粒增强工业纯Al基复合材料,研究混料时间和挤压对复合材料显微组织和力学性能的影响。研究表明:机械混粉过程存在最佳的混料时间,混料时间为16 h时SiC颗粒分布均匀,复合材料的密度高、力学性能好。挤压可以改善复合材料的界面结合强度、减少孔洞的数量,从而提高材料的致密度和力学性能。烧结态复合材料的断裂机制以基体的脆性断裂以及增强相与基体的界面脱粘为主。挤压态复合材料的断裂以基体的韧性断裂以及SiC颗粒的脆性断裂为主,伴随着少量的基体与SiC颗粒的界面脱粘。  相似文献   

18.
采用粉末冶金法制备了体积分数为35%的SiC_p/6061Al基复合材料,研究了复合材料的显微组织和基体与增强体颗粒界面对复合材料力学性能的影响。结果表明:SiC颗粒在基体中分布均匀,基体与增强体之间的界面结合情况较好,复合材料致密度高,抗拉强度较高。  相似文献   

19.
加压烧结工艺对碳纤维增强TiC复合材料力学性能的影响   总被引:3,自引:1,他引:3  
采用真空加压烧结工艺制备了 2 0 % (体积分数 )短碳纤维增强TiC复合材料 (Cf/TiC) ,研究了加压烧结温度、烧结时间和烧结压力对力学性能的影响。烧结温度由 190 0℃提高到 2 10 0℃ ,复合材料的横向断裂强度和断裂韧度分别由 387MPa和 4 14MPa·m1/2 提高到 5 93MPa和 6 87MPa·m1/2 ,当烧结温度再提高到2 2 0 0℃ ,强度和韧性反而有所下降。加压压力由 2 0MPa提高到 35MPa时 ,横向断裂强度和断裂韧度分别由5 5 7MPa、6 41MPa·m1/2 提高到 6 0 2MPa和 6 92Mpa·m1/2 。当保温时间由 0 5h提高到 2h时 ,复合材料的横向断裂强度和断裂韧度分别由 5 6 8MPa、6 5 3MPa·m1/2 提高到 5 93MPa和 6 87MPa·m1/2 。Cf/TiC复合材料合适的烧结工艺是在 2 10 0℃、30MPa下烧结 1h ,所制备的材料的相对密度为 97 6 % ,弹性模量为 416GPa ,横向断裂强度为 5 93MPa ,断裂韧度为 6 87MPa·m  相似文献   

20.
利用粉末热挤压工艺制备SiCp/2024铝基复合材料,研究所制备复合材料的挤压态和热处理态的显微组织及力学性能,分析复合材料的断口形貌和断裂类型。结果表明:大部分SiC颗粒和析出的大量细小第二相粒子均匀地分布在基体合金中,部分区域的SiC颗粒存在轻微团聚现象,晶粒沿挤压方向被显著拉长,刚性的SiC颗粒长轴平行于挤压方向分布,形成热加工纤维组织。对复合材料进行T6(490℃固溶75 min+170℃时效8 h)热处理后,复合材料的晶粒比较细小,抗拉强度达470 MPa,主要的析出强化相为S′(Al2CuMg)。挤压比的提高有利于提高SiC颗粒和基体合金的界面结合强度。粉末热挤压法制备的SiCp/2024铝基复合材料热处理后的断裂方式主要有3种:SiC颗粒断裂、SiC颗粒与基体合金的剥离和基体合金的韧性断裂,该复合材料的断裂机制为韧性断裂和脆性断裂共存的混合断裂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号