首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以甲基丙烯酸聚乙二醇单甲醚酯600(MPEGMAA600)、烯丙基磺酸钠(SAS)、马来酸酐(MAH)和2-丙烯酰胺-2-甲基丙磺酸(AMPS)为原料,过硫酸铵-硫代硫酸钠为引发剂,合成了MPEGMAA-SAS-MAH-AMPS聚羧酸减水剂。经正交试验选出最佳合成工艺条件为∶n(MPEGMAA600)∶n(SAS)∶n(MAH)∶n(AMPS)=1.0∶0.3∶1.0∶0.4,过硫酸铵-硫代硫酸钠引发体系占聚合单体总质量的0.4%,聚合温度50℃,聚合时间4 h。该条件下单体转化率为93.67%。红外光谱仪和凝胶色谱分析结果表明,该减水剂链段中含有羧基、氨基、磺酸基、醚键等官能团,平均相对分子质量分布集中,峰值大都集中在1万~1.4万之间。  相似文献   

2.
酯类聚羧酸系减水剂的合成与性能研究   总被引:1,自引:0,他引:1  
采用酯化工艺合成了一种含聚醚长链的聚乙二醇单甲醚单甲基丙烯酸酯(MPEGMAA),以此大单体和丙烯酸(AA)、甲基丙烯酸(MAA)、丙基磺酸钠(SAS)、马来酸酐(MAn)等进行自由基聚合,合成了酯类聚羧酸系减水剂.并确定了合成该类减水剂的最佳配比为:n(AA):n(MAA):n(MPEG600MAA):n(MAn):n(SAS)=10.5:3.5:7.0:2.0:7.0,引发剂过硫酸铵用量为1.0%.当减水剂掺量为0.25%时,水泥净浆初始流动度为345mm,120min内水泥净浆流动度基本无损失.  相似文献   

3.
聚羧酸系混凝土减水剂合成工艺及性能研究   总被引:1,自引:1,他引:1  
以大分子单体甲基丙烯酸聚乙二醇单甲醚酯(MAAMPEA)、2-丙烯酰胺-2-甲基丙基磺酸钠(AMPS)、甲基丙烯酸(MAA)共聚合成聚羧酸减水剂,对其合成工艺、减水剂的水化热-电性能及水泥混凝土性能进行研究。结果表明,当n(MAAMPEA400)∶n(MAA)=1∶3、AMPS的摩尔分数为10%、引发剂用量为单体质量的5%~7%、反应温度为80℃时,合成的共聚物减水剂有较好的分散性和分散保持性,能有效抑制水泥水化放热作用,延缓浆体结构形成,与国外同类产品性能接近。  相似文献   

4.
蔗糖酯改性聚羧酸减水剂的合成   总被引:2,自引:1,他引:1  
以自制丙烯酸蔗糖酯(ASE)、自制丙烯酸聚乙二醇单甲醚酯(MPA)、丙烯酸(AA)、甲基丙烯磺酸钠(MAS)为原料,以过硫酸铵(APS)为引发剂,采用水溶液共聚法合成聚羧酸系减水剂。研究了反应过程中单体物质的量比、引发剂用量、蔗糖酯含量对聚羧酸系减水剂性能的影响,在n(AA)∶n(MPA)∶n(MAS)∶n(ASE)=3.5∶1.0∶1.0∶0.3,引发剂用量为2.5%,ASE含量为7.8%(质量比)时合成的改性聚羧酸减水剂性能最好,其折固掺量为0.2%,水灰比为0.29时,水泥净浆流动度达303 mm。  相似文献   

5.
选用丙烯酰胺(AM)、二甲基二烯丙基氯化铵(DMDACC)、丙烯酸(AA)、甲基丙烯酸二甲氨乙酯(DMAEMA)为单体,甲基丙烯磺酸钠(SMAS)为链转移剂,过硫酸铵(APS)和抗血坏酸(Vc)为引发剂,通过水溶液自由基聚合,合成了一种聚羧酸抗泥剂。以内掺膨润土的水泥净浆流动度为评价指标,通过正交试验和单因素实验对工艺进行优化。试验结果表明,最佳合成工艺为:n(AA)∶n(DMDACC)∶n(AM)∶n(SMAS)=3.6∶1.4∶2.5∶0.5,反应温度为65℃,引发剂用量为单体总质量的6%。在此条件下合成的抗泥剂,可显著提高聚羧酸减水剂的抗泥性能。在膨润土掺量为5%、聚羧酸减水剂掺量为0.15%时,掺0.05%抗泥剂前后的水泥净浆流动度分别为270 mm和205 mm。  相似文献   

6.
以异丁烯醇聚氧乙烯醚(HPEG)、丙烯酸(AA)为主要聚合单体,甲基丙烯酸羟乙酯(HEA)部分取代AA,巯基丙酸(MPA)为链转移剂,通过双氧水(H_2O_2)-抗坏血酸(Vc)引发,采用一步合成方法 ,在低温条件下制备了一种缓释型聚羧酸减水剂。研究分析了反应温度、酸醚比、HEA取代量、MPA用量、H_2O_2与Vc摩尔比、滴加时间等因素对合成减水剂产品性能的影响。利用正交试验,筛选出低温条件下较优的合成工艺:反应温度40℃,n(AA)∶n(HPEG)=4∶1,n(HEA)∶n(HPEG)=4.38:1,MPA用量(按HPEG单体质量分数计,下同)为0.65%,引发剂用量为1.17%,n(H_2O_2)∶n(Vc)=2.5∶1,滴加时间3h。当减水剂折固掺量为0.22%时,水泥初始净浆流动度达到280mm,0.5h后净浆流动度达到295mm,1h后净浆流动度达到302mm,相同掺量下与其他减水剂产品相比具有更好的分散性和分散保持性,且胶砂减水率达到37.5%。此外,通过傅里叶红外(FTIR)和热重分析(TGA)等手段对共聚物进行了表征。  相似文献   

7.
采用丙烯酸羟乙酯与酒石酸进行酯化,将酯化产物(M)与丙烯酸(AA)、甲基烯丙基聚氧乙烯醚(TPEG)、2-丙烯酰胺-2-甲基丙烷磺酸(AMPS)在引发剂过硫酸铵作用下进行共聚,合成了一种缓释型聚羧酸系减水剂。探讨了单体摩尔比、催化剂用量、酯化温度、带水剂等因素对酯化反应的影响,考察了酯化产物M对丙烯酸AA替代量对水泥净浆流动性的影响。结果表明:酯化反应的最佳条件为:n(酒石酸)∶n(丙烯酸羟乙酯)=1∶5,酯化温度85℃,催化剂对甲苯磺酸掺量3%,带水剂环己烷用量为反应物总质量的40%;将合成的酯化产物M部分替代AA进行减水剂的合成,最佳单体比例为:n(AA)∶n(TPEG)∶n(AMPS)∶n(酯化产物M)=1.25∶1.00∶0.27∶2.00;当合成的聚羧酸减水剂掺量为0.3%时,水泥净浆初始流动度为245.0 mm、1 h流动度为207.5 mm、2 h流动度为225.0 mm,制备的聚羧酸减水剂具有良好的缓释功能。  相似文献   

8.
通过以甲基烯丙基聚氧乙烯醚(TPEG),丙烯酸(AA)为主要原料合成缓释型聚羧酸减水剂,研究了反应温度、反应时间、酸醚比,以及2-丙烯酰胺-2-甲基丙磺酸(AMPS)、丙烯酰胺(AM)和不同引发剂的用量等因素对缓释型聚羧酸减水剂性能的影响.结果表明,缓释型聚羧酸减水剂最佳合成工艺为:n (AA)∶n (AMPS)∶n (AM)∶n (TPEG) =3.25:0.27:0.40:1.00,引发剂用量为TPEG总质量的0.25%,反应温度为70℃,滴加反应时间为4h.所合成的缓释型聚羧酸减水剂,在水灰比为0.29,掺量为0.4%的条件下,水泥初始净浆流动度达280 mm,净浆流动度损失较小,混凝土坍落度损失小,1h几乎无损失,2h损失30 mm,与其它缓释型聚羧酸减水剂相比具有更好的缓释效果.  相似文献   

9.
以异戊烯醇聚氧乙烯醚(TPEG2400)、2-丙烯酰胺-2-甲基丙磺酸(AMPS)、马来酸酐(MA)、过硫酸铵(APS)为原料,合成了改性聚醚型聚羧酸减水剂,然后测定其流动性能。结果表明,聚醚型聚羧酸减水剂的最佳合成参数为反应单体摩尔比TPEG∶MA∶AMPS=1∶2∶3,引发剂用量为单体质量的4%,固含量为30%,反应时间为5 h,反应温度为80℃;当折固掺量为0.1%减水剂,水灰比为0.35时,水泥的净浆流动度可以达312 mm。由于将MA、AMPS和TPEG聚合,TPEG中存在醚键提供了较厚的亲水性立体保护膜,使得水泥粒子有稳定的分散性,故合成的聚醚型聚羧酸减水剂具有优良的性能。  相似文献   

10.
以异戊烯醇聚氧乙烯醚(TPEG2000)、2-丙烯酰胺-2-甲基丙磺酸(AMPS)、甲基丙烯酸羟乙酯(HEMA)、甲基丙烯酸甲酯(MMA)为原料,过氧化二苯甲酰(BPO)为引发剂,采用本体聚合法制备了TPEG-AMPS-HEMA-MMA固体醚类抗泥型聚羧酸减水剂。通过FTIR、XRD、SEM、TG-DTG和TOC测试分析了合成减水剂的作用机理。结果表明:制备的减水剂延缓了水泥7 d内的水化过程,蒙脱土对其以表面吸附为主,层间吸附为辅,饱和吸附量为2.41 mg/g。  相似文献   

11.
以2-丙烯酰氧基-1,2,3-三羧基丙烷(ACP)、丙烯酸(AA)、丙烯酸聚乙二醇单甲醚酯(MPA)和甲基丙烯磺酸钠(MAS)为单体,过硫酸铵(APS)为引发剂,采用水溶液共聚法合成柠檬酸改性四元聚羧酸系减水剂。实验结果表明,改性聚羧酸减水剂的最优合成条件为:反应温度90℃,反应时间5 h,APS用量为单体总质量的2.5%,在单体配比为n(ACP)∶n(AA)∶n(MPA)∶n(MAS)=0.47∶3.5∶1.2∶1.0,所合成减水剂的减水率高达31%,2 h内水泥净浆流动度基本无损失。  相似文献   

12.
以甲基烯丙基聚氧乙烯醚(TPEG)、2-丙烯酰胺-2-甲基丙磺酸(AMPS)、丙烯酸(AA)为主要原料合成了聚羧酸系减水剂。通过正交实验研究了单体配比、引发剂用量等因素对聚羧酸系减水剂分散性能的影响。结果表明,最佳单体配比为:n(AA)∶n(TPEG)∶n(AMPS)=3∶1∶0.15,引发剂过硫酸铵(APS)用量为TPEG质量的0.25%。在最佳配比条件下,考察了反应时间和反应温度对聚羧酸系减水剂性能的影响。在70℃下反应5 h,减水剂对硬石膏的分散性能最佳,硬石膏的初始和2 h的净浆流动度分别为263 mm和255mm,表现出较好的缓凝效果。  相似文献   

13.
以异戊烯醇聚氧乙烯醚(TPEG2400)、丙烯酸(AA)和甲基丙烯酰氧乙基三甲基氯化铵(DMC)为单体,过氧化氢(H2O2)/抗坏血酸(Vc)为引发剂,3-巯基丙酸(3-MPA)为链转移剂,合成了两性聚羧酸减水剂。以水泥净浆流动度为评价指标,确定最优单体摩尔比为n(TPEG2400)∶n(AA)∶n(DMC)=1.0∶3.2∶0.3。测试结果表明,当水灰比为0.29、两性聚羧酸减水剂折固掺量为水泥质量的0.13%时,水泥净浆初始流动度为275 mm,60 min流动度为245 mm,具有较好的分散性和分散保持性。当水泥中膨润土含量达2%,减水剂折固掺量为0.13%时,APC2具有较好的抗泥性,且具有良好的分散保持性能。  相似文献   

14.
木质素磺酸盐改性聚羧酸减水剂的合成   总被引:1,自引:0,他引:1  
采用自由基共聚法,将大单体聚乙二醇单甲醚甲基丙烯酸酯(MPA)、木质素磺酸钠(LS)、丙烯酸(AA)和甲基丙烯磺酸钠(MAS)4种单体进行共聚,合成木质素磺酸盐改性聚羧酸减水剂。在n(AA)∶n(MPA)∶n(MAS)=5.0∶1.0∶1.0,引发剂用量为2.5%,LS用量为9%,反应温度80℃和反应时间为5 h的条件下合成的减水剂,掺量为0.2%、水灰比为0.29时,掺减水剂水泥净浆初始流动度达290 mm、30 min经时流动度为285 mm,流动度保持性良好。减水剂PC-LS掺量为0.4%时,砂浆的减水率达30%。  相似文献   

15.
以甲氧基聚乙二醇甲基丙烯酸酯(MPEGMA)、丙烯酸(AA)、2-丙烯酰胺-2-甲基丙磺酸(AMPS)和丙烯酸甲酯(MA)为原料,在过硫酸铵(APS)引发下合成四元聚羧酸减水剂.通过单因素及正交试验结果表明,聚羧酸减水剂的最优合成条件为:反应温度85℃,反应时间8 h,APS用量为单体总质量的0.7%,n(AMPS):n(MPEGMA):n(MA):n(AA)=17:8:6:69.合成的减水剂掺量为0.6%,水灰比为0.3时,水泥净浆初始流动度达302 mm,2 h内水泥净浆流动度基本无损失.减水剂的数均分子质量以50 000~55 000较适宜.  相似文献   

16.
通过实验对反应温度、反应时间、链转移剂、引发体系等因素对超高浓度聚羧酸系减水剂分散性能的影响进行了研究。结果表明,使用维生素C-双氧水氧化还原引发体系[n(H2O2)∶n(Vc)=4∶1],H2O2用量为大单体的1.5%,磷酸三钠用量为大单体的1.2%,SMAS用量为大单体的6%,在室温(20~40℃)条件下反应3 h,合成的超高浓度(质量浓度80%)聚羧酸系减水剂的分散性能优良。当减水剂折固掺量为0.20%、水灰比为0.29时,水泥净浆流动度可达285 mm,60 min净浆流动度为288 mm,120 min净浆流动度为282 mm,流动度经时损失小;同时其混凝土应用性能良好,减水率达30%。  相似文献   

17.
以甲基烯丙基聚氧乙烯醚(TPEG)、丙烯酸(AA)、2-丙烯酰胺-2-甲基丙磺酸(AMPS)、丙烯酰胺(AM)等作为合成的主要原材料,按n(AA)∶n(AMPS)∶n(AM)∶n(TPEG)=(3.5~2.0)∶0.3∶0.3∶1.0,选取酸醚比[n(AA)∶n(TPEG)]为3.5、2.75、2.0,催化剂用量为大单体质量的0.05%、0.10%、0.15%,在不同温度下合成缓释型聚羧酸系减水剂。通过测试水泥净浆经时流动度,确定不同合成温度下最佳的酸醚比和催化剂用量。并对按最佳配比合成的减水剂进行性能试验研究,结果表明,采用适当的合成工艺,常温和高温条件下合成的缓释型聚羧酸减水剂的性能基本相同。  相似文献   

18.
聚羧酸减水剂的合成条件对水泥净浆流动度的影响   总被引:1,自引:0,他引:1  
赵苏  吴娇颖  富尔康 《混凝土》2012,(5):44-46,49
讨论合成条件对水泥净浆流动度的影响,确定适宜的合成条件。试验表明:引发剂用量达到大单体质量的6.8%,大单体、顺丁烯二酸酐、甲基丙烯磺酸钠和丙烯酰胺的质量比为1∶0.235∶0.100∶0.027,反应温度约为80℃,反应时间为6~7 h,制备出了水泥净浆流动度为280 mm、分散性能较好的聚羧酸减水剂。红外光谱表明,聚羧酸减水剂分子中包含羟基(-OH)、磺酸基(-SO-3),羧基(-COOH)、酰胺基(-CONH2)、醚基(-O-)等特征官能团,说明特征官能团对聚羧酸减水剂的性能起着重要作用。  相似文献   

19.
以马来酸酐(MA)和聚乙二醇(PEG)为原料酯化合成大单体马来酸聚乙二醇酯(MAPEG),并测定酯化率,用IR表征酯化物的结构.以马来酸聚乙二醇单酯(MAPEG)、烯丙基磺酸钠(SAS)和丙烯酰胺(AM)为原料通过共聚反应制得MAPEG-SAS-AM三元共聚物高效减水剂.讨论了共聚反应中影响合成减水剂性能的因素,并用GPC表征了减水剂的相对分子量及其分布.通过SEM分析了水泥石的微观结构.结果显示,当n(MAPEG)∶n(SAS)∶n(AM)=1.0∶1.5∶1.5,聚合反应温度为75℃,聚合反应时间为8h,引发剂用量为单体总质量的9%,PEG相对分子质量为1 000时,合成减水剂的综合性能良好.当其掺量为1.0%时,水泥净浆初始流动度达313 mm.GPC分析显示减水剂平均分子量Mn=6 754,分散系数M√Mn=2.156,SEM分析结果显示减水剂使水泥石大孔减少,结晶生长更密实.  相似文献   

20.
以乙二醇单乙烯基聚乙二醇醚(EPEG)为大单体,丙烯酸(AA)、2-丙烯酰胺-2-甲基丙磺酸(AMPS)为小单体,以双氧水与抗坏血酸作为氧化还原体系,巯基乙醇与次磷酸钠(NaH2PO2)作为链转移剂,合成了聚羧酸减水剂PC-220。通过单因素试验确定了最佳反应参数为底釜pH=5、滴加时间1 h。基于响应面设计方法建立了二次多项式回归方程,以石膏净浆流动度与水泥净浆流动度为响应值,进行响应面优化后,确定了酸醚比为4.24,NaH2PO2用量为0.33%,AMPS用量为0.66%。优化后掺PC-220的石膏净浆流动度相对误差为1.3%、水泥净浆流动度相对误差为0.8%,表明响应面优化可行。应用结果表明,合成的PC-220在水泥基灌浆料与石膏自流平中的使用效果优于PC-530与PC-570。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号