首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在热力学分析的基础上,通过碳热还原和磁选分离对白云鄂博含铌尾矿中铁的回收与铌的富集进行探索性研究。结果表明,在1 000~1 100℃下,以碳为还原剂进行焙烧可以对含铌尾矿中的铁氧化物进行选择性还原。1 100℃焙烧0.5h并经湿磨后在50mT的磁场强度下磁选,可实现铁精粉与含铌矿物的分离。磁选所得铁精粉中铁品位为84.82%,铁收得率为81.95%,磁选尾矿中铌品位为1.98%,铌回收率达到95%以上。  相似文献   

2.
研究了添加剂对低品位稀土铌铁粗精矿还原焙烧过程中Fe与稀土、Nb分离的影响。结果表明,31.9%TFe、3.16%REO、2.91%Nb_2O_5的稀土铌铁粗精矿直接还原焙烧,磁性物Fe品位仅为54.45%,非磁性物中稀土和Nb的回收率仅为44.28%和62.65%。添加15%Na_2SO_4、5%活性炭进行还原焙烧效果最好,产物中磁性物质Fe品位为89.32%,Fe回收率为91.47%,非磁性物质中REO、Nb_2O_5含量分别为5.36%、4.62%,其回收率分别达到96.09%和95.83%。微观结构研究结果表明,未加添加剂时,焙烧产物中Fe颗粒细小,且与其他矿物界限不清晰,大部分稀土、Nb晶粒聚集程度较弱,晶粒间结合不紧密,分选效果不理想。在Na_2SO_4和活性炭的协同作用下,还原焙烧产物中Fe、稀土和Nb晶粒均聚集长大,Fe与稀土、Nb和脉石矿物间界限分明,利于分离。  相似文献   

3.
某氟碳铈型稀土粗精矿中铁含量较高(全铁3%~10%)、稀土氧化物(REO)含量偏低,约占50%~60%,水分为6.5%;经工艺矿物学分析表明,粗精矿中铁元素主要以弱磁性的赤(褐)铁矿的形式存在,且部分铁矿物与氟碳铈矿解离不彻底,难以直接采用磁选方法与氟碳铈矿分离,因此采用磁化焙烧-磁选工艺提高REO品位。磁化焙烧热力学分析表明,在磁化焙烧过程中,氟碳铈矿发生分解反应,不会与铁氧化物发生反应;当温度高于626.85 ℃时,水会与碳发生水煤气反应产生CO和H2,即水分的存在有利于铁氧化物的还原。含水的稀土粗精矿在还原温度为650 ℃、还原时间为30 min和还原剂用量为2%的条件下,磁化焙烧的还原度为41.59%;经过一次粗选、再磨再选的工艺,精矿REO品位和回收率分别为68.53%、96.59%,铁粉的铁品位和回收率分别为68.56%、80.38%。该工艺的应用既提高了精矿REO和铁精矿品位,又省去了干燥作业。  相似文献   

4.
利用锯末为焙烧高炉灰提供还原气氛,回收高炉灰中的铁,在绿色节能的同时实现高炉灰资源化利用。通过响应曲面法设计分析了焙烧温度、焙烧时间和还原剂配比对磁选精矿中铁品位、回收率的影响,并建立自变量与响应值间的数学预测模型,确定了磁化焙烧回收高炉灰中铁的最优工艺条件:焙烧温度686.65℃、焙烧时间25.03 min、还原剂配比1:8.6,在此条件下得到预测磁性铁品位68.325%、回收率90.945%,试验验证值与模型预测值相差在0.3%以内,表明该模型优化结果可靠,可应用于锯末磁化焙烧高炉灰提铁过程。  相似文献   

5.
高铁氧化铝赤泥中铁回收技术研究   总被引:1,自引:0,他引:1  
以高铁氧化铝赤泥为对象进行还原焙烧-磁选试验研究,从铁氧化物还原理论出发,分析其在还原气氛下的行为特点,重点研究了在不同种类添加剂类别及用量情况下,赤泥中铁氧化物还原效果及还原后的金属铁与其它非磁性成分分离效果。最终试验结果表明,实验条件为添加6%碳酸钠、6%硫酸钠时(还原条件:焙烧温度1 050℃、焙烧时间60 min、还原介质为褐煤),焙烧矿中铁的金属化率为90.16%,在一定条件下经磨矿磁选后铁精矿全铁品位为90.21%,铁回收率达到94.86%。  相似文献   

6.
以红土镍矿为主要原料,通过改变不同还原温度、还原时间、配碳量及生石灰配加比例进行还原焙烧-磁选来提取红土镍矿中的镍和铁。结果表明:还原温度是影响镍、铁回收率的最主要因素。在焙烧过程中,镍和铁的氧化物均得到还原,反应产物结构更加致密,且有少量细小珠铁粒的产生。在本实验条件下,当温度为1 230℃、配碳的碳氧比为1.4、生石灰配加量10%时、恒温35min时的铁和镍回收率均达到最高,此时铁的收得率为91.35%,镍的收得率为86.54%。  相似文献   

7.
为提高红土镍矿金属品位及回收率,采用含碳球团还原焙烧-磁选分离工艺对镍品位为1.45%(质量分数,余同)的红土镍矿进行了处理,研究了还原温度、配碳量、还原时间以及磁选工艺对Ni、Fe品位和回收率的影响。试验结果表明:随着还原温度和配碳量的增加,Ni、Fe品位及回收率均会增加,其中温度的影响最大,配碳量次之,时间最小。1...  相似文献   

8.
对铝土矿进行磁化焙烧—磁选处理,考察氢气通入量,焙烧温度及焙烧时间对铁回收率和品位的影响,并研究不同焙烧条件下矿石中铁元素的分离规律。结果表明,当氢气流量为40mL/min、400℃焙烧75min后,铝土矿中铁的回收率及回收品位最优,分别为69.58%和44.59%,能较好实现铁质元素的分离和回收。该条件下焙烧磁选后的铝精矿氧化铝的实际溶出率为86.2%,比未经过焙烧磁选的铝土矿提高了6.6个百分点。  相似文献   

9.
复杂稀有金属矿综合利用新工艺   总被引:2,自引:1,他引:1  
研究一种从复杂稀有金属矿中综合回收稀土、铌、钛的新工艺。按6∶5的酸矿质量比添加浓硫酸混匀后在400℃酸化,酸化渣浸出后,浸出液按1∶1的体积比加水在100℃水解60min得到水解沉淀,浸出渣采用强磁选分离得到磁性物及非磁性物。将水解沉淀与磁性物混匀在1 800℃还原熔炼,获得Nb2O5含量22.38%、铁品位52.32%的铌铁合金和TiO2含量35.12%的钛渣,铌、钛回收率分别为66.89%和50.38%。水解液在通入空气的条件下用氨水调节至pH=3进行固液分离,按理论量1.2倍添加草酸沉淀稀土,最后将该稀土沉淀在950℃煅烧60min,可得到REO含量92.4%的稀土氧化物,稀土总回收率71.32%。  相似文献   

10.
直接还原法处理复杂稀有金属矿新工艺   总被引:1,自引:0,他引:1       下载免费PDF全文
开发了一种复杂稀有金属矿"直接还原—酸化浸出—沉淀煅烧"回收稀土、铌、钽和铁的新工艺。结果表明,添加质量分数35%碱性添加剂在1 050℃还原120min,还原产物经湿式弱磁选分离获得铁品位91.62%的铁粉,铁回收率为91.03%。非磁性物采用硫酸酸化、浸出、沉淀得到REO含量93.37%的稀土氧化物,稀土总回收率74.26%。沉淀稀土后的溶液添加氨水调节溶液pH至8.5,得到铌钽沉淀,经煅烧后得到Nb(Ta)2O5含量32.65%的铌钽富集物,铌和钽回收率分别为75.44%和66.21%。  相似文献   

11.
包头选矿厂现流程中强磁粗选铁精矿含稀土及铌矿物较高,用强磁精选分离铁与硅、稀土、铌,效果不很理想,稀土及铌矿物在强磁精选铁精矿中的损失率较高,对后续工艺回收稀土和铌都将产生较大影响。通过对强磁选粗精矿进行了还原焙烧—磁性分离的探索试验,取得了铁精矿含铁63.53%,铁回收率77.97%,其中含REO降至1.35%,Nb2O5降至0.16%,在铁精矿中稀土损失率降至6.04%,铌的损失率降至26.44%,分选指标较好。  相似文献   

12.
应用化学分析、扫描电镜观察和X射线衍射分析方法研究海砂矿的基础物性.采用煤基深度还原-磁选工艺,系统考察矿粉中Fe和Ti的还原分离行为,并明确还原温度、还原时间、碳氧比、磁感应强度和磨矿粒度对还原磁选效果的影响规律.结果表明:海砂矿主要由钛磁铁矿和钛赤铁矿组成;较优的还原分离工艺参数为还原温度1300℃、还原时间30 min、碳氧摩尔比1.1、磁感应强度50 mT和磨矿细度-0.074 mm质量分数86.34%.在此工艺条件下,可以获得金属化率94.23%的还原产物,磁选指标分别达到精矿铁品位97.19%和尾矿钛品位57.94%,对应的铁、钛回收率为90.28%和87.22%,有效地实现海砂矿中铁钛元素的分离富集.   相似文献   

13.
以铁品位35.59%的山东某地的铜渣和山东、甘肃两地的四种高炉灰为原料,进行共还原—磁选回收铁工艺试验,研究了高炉灰作为共还原—磁选工艺还原剂的可行性。结果表明,焙烧体系中仅加入高炉灰时,铜渣与高炉灰共还原—磁选所得还原铁指标均较差;当加入氟化钙时,还原铁中铁品位和铁回收率均大于90%,指标较好,实现了铜渣与高炉灰中铁资源的高效回收。高炉灰种类及用量、氟化钙用量、还原温度、还原时间及磨选条件均对还原铁指标有影响,在铜渣∶G1∶氟化钙质量比为100∶30∶15、共还原温度1250℃、共还原时间60 min的条件下焙烧,然后在磨矿细度-74μm占51.87%、磁场强度80 kA/m条件下磁选,可获得铁品位和铁回收率分别为92.06%和92.65%的直接还原铁。该工艺可以为铜渣和高炉灰的综合利用提供参考。  相似文献   

14.
红土镍矿还原焙烧-磁选试验研究   总被引:3,自引:0,他引:3  
论述了采用还原焙烧-磁选工艺处理含镍1.66%、全铁13.0%的红土矿。考察了配煤量、焙烧温度和焙烧时间对焙烧球团铁、镍品位及铁金属化率的影响;当焙烧温度达到1 350℃时出现粒铁。磁选结果表明,粒铁的生成有利于磁选精矿中铁、镍品位的提高,磨矿粒度越细,磁选效果越好。试验结果达到镍质量分数(含量)6.56%、全铁51.60%。  相似文献   

15.
在还原时间90min、氧化钙配比10%、复合剂配比11%、还原碳配比5%的条件下制成球团进行焙烧、磁选。考察球团还原过程温度的变化对球团产生镍铁颗粒金属化率和镍品位的影响。结果表明:还原的最佳温度1 200~1 250℃,此温度下镍的金属化率达到89%以上、铁的金属化率85%以上。镍的品位达到5%。  相似文献   

16.
对某褐铁矿型红土镍矿进行了磁化焙烧-弱磁选预富集试验研究,重点考察了煤粉配比、焙烧时间、磨矿细度和弱磁选磁场强度等因素对分选指标的影响。在焙烧温度为750℃,焙烧时间为50 min,配煤量为12%条件下进行磁化焙烧,焙烧产物在磨矿细度-0.038 mm为34.29%,磁场强度为0.30 T的条件下进行磁选分离,获得的铁精矿中铁和镍品位分别为60.71%和1.03%,铁和镍的回收率分别为91.13%和90.80%,表明磁化焙烧—磁选是预集回收褐铁矿型红土镍矿中铁和镍的有效技术途径。  相似文献   

17.
以印尼某红土镍矿为原料,通过差热-热重分析法(TG-DSC)研究了矿石的热特性,发现至少需要800℃才能将结晶水脱除干净。通过改变预还原焙烧条件,研究了焙烧温度、煤粉粒度、配碳量以及焙烧时间对预还原焙烧效果的影响。发现在碳氧比为1,煤粉粒度为3~5mm的条件下,于1 000℃下焙烧20 min后,可以使物料中铁和镍的金属化率分别达到17.3%和65.7%。从800℃升到1 100℃的过程中,镍、铁金属化率的比值从3.8降到3.0。当焙烧温度一定时,镍的还原优势在较低的配碳量和较短焙烧时间下体现的非常明显。用X射线衍射(XRD)和电子扫描显微镜(SEM)对还原之后的物料进行了分析,发现铁、镍金属单质未能聚集成颗粒。  相似文献   

18.
对金精矿焙烧氰化浸金工艺产生的尾渣用煤粉作还原剂进行了磁化焙烧研究,通过对尾渣中铁的物相分析表明,尾渣中的铁主要以Fe2O3的形态存在。主要研究了煤粉的加入量、焙烧温度和焙烧时间对尾渣中铁的还原度的影响。结果表明,以煤为原料通过磁化焙烧可以获得Fe3O4,磁化焙烧的较优条件为焙烧温度750℃,焙烧时间1 h,煤粉用量为尾矿重量的10%,可以使焙烧处理的尾矿中Fe2O3的还原度达到51.7%,磁化焙烧后渣中的磁性矿中铁达到72.75%。  相似文献   

19.
以浮选铜渣的尾渣为原料,对其配碳还原和磁选分离工艺进行实验研究.探究碱度、温度对铜渣还原的影响,并研究在相应条件下不同粒度对磁选产物的影响.对铜渣进行矿相分析可知铁主要以Fe3O4和铁橄榄石形式存在;焙烧温度为1 175℃、配碳量为wC/wO=1.2、碱度为R=0.4、粉碎粒度小于42μm时经还原和磁选,可得铁品位74.7%的磁性物质;对还原产物进行矿相分析后发现金属铁颗粒弥散分布在还原产物中,铜元素以冰铜的形式嵌布在金属铁颗粒中.  相似文献   

20.
对某稀土尾矿进行了不同磁浮工艺综合回收稀土、铁、铌和萤石的试验研究,研究了不同工艺对4种有价成分回收率的影响,并采用扫描电镜(SEM)、X射线衍射(XRD)等手段对稀土尾矿、铌铁焙烧产物进行测试。结果表明,4种有价成分金属含量主要分布在细粒级和微细粒级中,并与其他脉石矿物呈包裹体和连生体形式存在。稀土尾矿在分选稀土和萤石时,磁选工艺优于浮选工艺;分选铌和铁时,还原焙烧-弱磁工艺优于磁浮联合工艺,其中弱磁性铁矿物经还原焙烧成为单质铁;弱磁-强磁-浮选-焙烧-弱磁工艺流程适合于高效回收稀土尾矿中的4种有价成分,稀土尾矿经弱磁预先分离磁铁矿,弱磁尾矿经过强磁、浮选和还原焙烧-弱磁工艺,分别得到铁、稀土、铌和萤石粗精矿的回收率可达61.55%,57.33%,47.96%和56.14%,达到了综合高效回收的目标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号