首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用高温固相法制备了K_2Gd_(1-x-y)(PO_4)(WO_4):x Sm~(3+),y Eu~(3+)新型红色荧光材料,通过利用X射线衍射谱(XRD)、荧光光谱对其结构及发光性能进行了研究。结果表明,稀土离子S~(3+)的掺入没有改变荧光粉的晶相;样品的激发光谱在394 nm有很强的激发峰,与近紫外LED芯片匹配,且Eu~(3+)的~5D_0→~7F_2电偶极跃迁表现出616 nm有较好的红光发射,Eu~(3+)的最佳掺杂量(摩尔分数)为y=0.3;Sm~(3+)进入晶格后,激发峰明显增强和变宽,表明Sm~(3+)对Eu~(3+)的发光起到敏化作用;K_2Gd_(0.68)(PO_4)(WO_4)∶0.3Eu~(3+),0.02Sm~(3+)样品在150℃时发光强度仍为初始温度的78%,具有良好的热稳定性且色纯度高,是一种潜在的白光LED用荧光粉。  相似文献   

2.
采用水热法制备了镧系离子Gd~(3+)/Yb~(3+)/Tm~(3+)和Dy~(3+)/Yb~(3+)/Tm~(3+)掺杂的NaLuF_4纳米晶。对样品进行了X-射线衍射分析(XRD)和上转换光谱分析。XRD结果显示所制备的NaLuF_4纳米晶的晶相结构、尺寸可通过简单的Gd~(3+)、Dy~(3+)掺杂方法来调控,随着Gd~(3+)、Dy~(3+)掺杂浓度的增加NaLuF_4纳米晶倾向于形成六角相结构,说明高的Gd~(3+)、Dy~(3+)浓度能够促进立方相向六角相的转变,有利于六角相结构的形成,为制备结构精确可控的纳米晶提供了一种简单的方法。在980 nm激光激发下,所制备的Gd~(3+)/Yb~(3+)/Tm~(3+)共掺的NaLuF_4纳米晶具有强的476 nm的蓝光发射,并且随着Gd~(3+)浓度的增加上转换发光强度逐渐减弱。  相似文献   

3.
《稀土》2021,(3)
用共沉淀法制备了Ho~(3+),Yb~(3+)掺杂的β-NaYF_4纳米晶,测量并分析了不同Yb~(3+)掺杂浓度下NaYF_4∶Ho~(3+),Yb~(3+)的荧光光谱与荧光衰减曲线。结果表明,在447 nm泵浦光激发下,较强的近红外光发射主要来源于Ho~(3+)-Yb~(3+)之间高效的能量传递过程。被泵浦光激发的Ho~(3+)通过~5F_4,~5S_2能级与~5F_5能级将能量传递给Yb~(3+),使Yb~(3+)从基态~2F_(7/2)能级跃迁到~2F_(5/2)能级。同时,处于~2F_(5/2)能级的Yb~(3+)可以将能量再传递给Ho~(3+)的~5I_6能级从而增强Ho~(3+)离子~5I_6→~5I_8的跃迁发光。在所研究的样品中,NaYF_4∶3%Ho~(3+),3%Yb~(3+)表现出最强的近红外荧光发射,其980 nm附近的荧光强度是NaYF_4∶3%Ho~(3+)样品的18倍。较强的近红外光发射使得NaYF_4∶Ho~(3+),Yb~(3+)材料在提高太阳能电池的光电转换效率以及进行荧光标记等方面有潜在的应用价值。  相似文献   

4.
采用高温固相反应法制备了一系列Li+掺杂的Ca(W,Mo)O_4∶Eu~(3+)荧光粉。通过X射线衍射仪、扫描电子显微镜及荧光光谱仪对样品的结构、形貌及荧光性能进行了表征。XRD及SEM结果表明,Li~+掺杂没有改变样品原有的四方晶系体心结构,Li+能够以替代和间隙掺杂的方式进入主晶格,适当的Li+掺杂可以改善样品的团聚现象。样品的激发光谱涵盖200~550nm的宽带激发,在395nm激发下,能发射出位于616nm处的窄带红光,归因于Eu~(3+)的~5D_0→~7F_2跃迁,适量Li~+的掺杂明显提升了样品的发光强度。与其他碱金属离子(Na~+、K~+)掺杂相比,Li~+由于半径最小、电负性最强,使得发光强度增强最多。  相似文献   

5.
以DEG为溶剂,分别配置一定比例的GdCl_3, TbCl_3作为前驱液,利用多元醇法合成可用于生物探针的Gd_2O_3:Tb~(3+)纳米晶;将一定量的APTES和TEOS加入制备好的溶液中,使得纳米晶Gd_2O_3:Tb~(3+)的表面包裹聚硅氧烷层。本实验通过马尔文粒度仪、 X射线衍射仪(XRD)、场发射扫描电镜(SEM)、透射电镜(TEM)、荧光分光光度计等检测方法研究不同煅烧温度和不同Tb~(3+)掺杂浓度对纳米晶Gd_2O_3的粒径、物相结构、和发光性能的影响。将真空干燥过的纳米晶Gd_2O_3:Tb~(3+)置于马弗炉中分别以600, 800, 1000℃进行煅烧,得到的样品经XRD表征后发现:当煅烧温度为800℃时,得到立方相结构的纳米Gd_2O_3:Tb~(3+)。通过研究不同Tb~(3+)离子掺杂浓度下纳米晶Gd_2O_3:Tb~(3+)的荧光强度表明:当Tb~(3+)离子浓度为5.0%时,纳米晶Gd_2O_3:Tb~(3+)的发射强度最强,尤其是在主发射峰545 nm附近Tb~(3+)的~5D_4→~7F_5能级跃迁峰,其峰值强度比掺杂浓度为2.5%时提高了39%; Tb~(3+)掺杂浓度升高至7.5%时,样品发生了浓度猝灭导致光谱强度下降。  相似文献   

6.
《稀土》2020,(4)
为了提高稀土荧光防伪系统的防伪力度,采用沉淀法制备了用于物品安全的Yb~(3+)单掺杂NaYF_4纳米颗粒。利用FT-IR分析了制备过程中间产物的化学组成。利用XRD和TEM对产物的形貌结构进行表征,并结合吸收光谱和发射光谱图,分析了不同掺杂浓度NaYF_4∶Yb~(3+)纳米颗粒发光特性。实验结果表明,Yb~(3+)与苯甲酸钠反应生成了多齿配合物,验证了苯甲酸钠在制备过程中起络合作用。在N_2氛围中经400℃煅烧4 h得到β-NaYF_4∶Yb~(3+)纳米颗粒,平均粒径为86 nm。该纳米颗粒在900 nm光的激发下具有930 nm~1080 nm的不可见红外发射(归属于Yb~(3+)的~2F_(7/2)→~2F_(5/2)),980 nm激发下具有475 nm的蓝色可见发射(归属于Yb~(3+)对的合作上转换发光),最大红外发射和蓝色上转换发射的样品掺杂浓度分别为5%和20%。研究结果表明NaYF_4∶Yb~(3+)纳米颗粒在物品追踪领域具有良好的应用前景。  相似文献   

7.
通过高温固相法制备了Sr_2MgSi_2O_7∶Eu~(2+),Dy~(3+),Yb~(3+)长余辉发光材料。采用XRD、SEM、激发光谱、发射光谱和余辉衰减曲线对Sr_2MgSi_2O_7∶Eu~(2+),Dy~(3+),Yb~(3+)长余辉发光材料的微观结构以及光学性能进行了表征,研究结果表明Sr_2MgSi_2O_7∶Eu~(2+),Dy~(3+),Yb~(3+)长余辉发光材料的晶体结构和显微结构均未发生明显变化。Yb~(3+)的引入使得Sr_2MgSi_2O_7∶Eu~(2+),Dy~(3+)显示出更优良的荧光性能和余辉性能,不同Yb~(3+)掺量对长余辉发光材料的陷阱深度和电子传输速率有显著影响。实验表明,当Yb~(3+)掺杂量为0.03时,Sr_2MgSi_2O_7∶Eu~(2+),Dy~(3+),Yb~(3+)的荧光光谱相对强度最强,且表现出最佳的余辉衰减性能。  相似文献   

8.
对Bi2WO6半导体材料进行了改性,利用水热法合成了Gd~(3+)和Dy~(3+)掺杂Bi2WO6光催化剂,并且采用XRD、UV-Vis、FE-SEM等测试手段进行表征,同时以噻吩的正辛烷溶液为模拟汽油研究了稀土掺杂对Bi2WO6的光催化脱硫活性的影响。UV-Vis吸收光谱表明,Gd~(3+)和Dy~(3+)掺杂使Bi2WO6催化剂的吸收向可见光区移动,导致其带隙变窄。光催化脱硫实验表明,Gd~(3+)和Dy~(3+)掺杂Bi2WO6的脱硫活性较纯的Bi2WO6有较大的提高,其中Gd~(3+)掺杂Bi2WO6的脱硫率高达94.5%。  相似文献   

9.
采用高温固相法制备了一系列的NaY_(0.78-x)(MoO_4)_2∶0.2Yb~(3+),0.02Ho~(3+),xZn~(2+)(x=0,0.05,0.1,0.15,0.2,0.25)荧光粉。通过X射线衍射仪、扫描电镜以及荧光光谱仪分别对样品的结构、形貌和荧光性能进行了表征。结果表明Zn~(2+)的掺杂可以通过替换Y~(3+)格位和占据晶格间隙的方式进入基质晶格。在980nm激光激发下,样品呈现出了强烈的绿光(551nm)和相对微弱的红光发射(668nm),分别归因于Ho~(3+)的~5F_4,~5S_2→~5I_8和~5F_5→~5I_8跃迁。Zn~(2+)的掺杂可以使上转换发光强度显著增强,其原因是Zn~(2+)掺杂产生了O~(2-)空位而且可以裁剪Ho~(2+)周围的局域晶体场对称性。基于泵浦依赖的研究,对能级图和可能的上转换发光机理进行了详细的讨论。  相似文献   

10.
《中国钨业》2017,(3):65-70
采用高温固相法合成了NaGd(WMo)O_(8-x/2)F_x:Eu~(3+)(x=0、0.1、0.2、0.3、0.4、0.5)系列红色荧光粉。分别采用X射线衍射、荧光光谱测试手段对所得粉末的晶型及其发光性能进行了表征分析。结果表明,该系列红色荧光粉均为白钨矿四方晶系结构,空间点群结构为I41/a(88),可被近紫外光395 nm有效激发,其最强发射峰位于616 nm处,属于Eu~(3+)的~5D_0→~7F_2电偶极跃迁。F-离子掺杂量为0.2 mol时发光强度最强,与未掺杂F-相比其发光强度提高了41%,其色坐标为(0.653,0.336)。由此可见,NaGd(WMo)O_(7.9)F_(0.2):Eu~(3+)是一种具有潜在应用价值的白光LED红色荧光粉。  相似文献   

11.
《稀土》2016,(3)
采用高温固相反应合成了SrAl_2O_(4-y)N_y∶Eu~(2+),Dy~(3+)系列长余辉荧光粉,并研究了SrAl_2O_(3.75)N_(0.25)∶Eu~(2+),Dy~(3+)体系的晶体结构、光谱特性、余辉衰减曲线及热释发光曲线。X射线衍射分析结果表明,SrAl_2O_(3.75)N_(0.25)∶Eu~(2+)荧光材料属六方晶系,P6322空间群,晶胞参数a=b=5.14,c=8.462,γ=120°。荧光光谱测试结果表明,SrAl_2O_(3.75)N_(0.25)∶Eu~(2+)的激发光谱和发射光谱均为宽带谱,激发光谱位于283 nm~450 nm,发射光谱的峰值位于487 nm,属于Eu~(2+)的4f65d1→4f7跃迁发射。Eu~(2+)的掺杂量并不改变SrAl_2O_(3.75)N_(0.25)∶Eu~(2+)发射光谱的形状和峰值位置,但对相对发光强度有较大影响,Eu~(2+)的摩尔浓度为2%时相对发光强度最高。余辉衰减曲线表明,Sr_(0.97)Al_2O_(3.75)N_(0.25)∶Eu_(0.02),Dy_(0.01)的余辉衰减符合指数衰减规律,由初始的快衰减和之后的慢衰减两个过程组成。通过热释发光曲线对荧光材料中的陷阱能级进行计算,得出Sr_(0.97)Al_2O_(3.75)N_(0.25)∶Eu_(0.02),Dy_(0.01)的能级陷阱为0.42 V,掺Dy~(3+)有利于提高该荧光材料的初始发光亮度和余辉时间。  相似文献   

12.
研究了以尿素为沉淀剂,通过改变加热方式、溶液pH、Eu~(3+)掺杂量及煅烧温度等条件,采用微波辅助液相法制备Y_2O_3:Eu~(3+)红色荧光粉,并对所得荧光粉进行检测分析。结果表明:试验所制备的荧光粉为规整的球形,涂敷性好,可以被近紫外激发光有效激发,发射主峰位于614nm处,归属于Eu~(3+)的~5 D_0→~7 F_2跃迁;该红色荧光粉可应用在白光LED。  相似文献   

13.
采用共沉淀法制备了Ca_(0.93-x)(Mo_(0.9)W_(0.1))O_4∶Eu_(0.07)~(3+),Bi_x~(3+)(0≤x≤0.05)系列样品,通过XRD、SEM及荧光光谱仪对粉体的晶体结构、形貌及荧光性能进行测试和表征。结果表明,Bi~(3+)、Eu~(3+)及WO_4~(2-)的掺杂没有改变CaMoO_4原有的四方晶系体心结构,且样品粒径分布较均匀,无明显团聚现象。随着Bi~(3+)的掺杂,Ca_(0.93-x)(Mo_(0.9)W_(0.1))O_4∶Eu_(0.07)~(3+),Bi_x~(3+)样品的激发光谱带边会发生红移,且激发强度呈现先增强后减弱的趋势,其发射光谱也具有相应的规律,Bi~(3+)的最佳掺杂浓度为x=0.02 mol,在395 nm激发下,样品的发光强度提升至134%;较之商用红色荧光粉Y_2O_2S∶Eu~(3+),Ca_(0.91)(Mo_(0.9)W_(0.1))O_4∶Eu_(0.07)~(3+),Bi_(0.02)~(3+)样品显现出更好的色纯度和发光强度,适合于近紫外LED用红色荧光粉。  相似文献   

14.
采用微乳液法合成具有不同Dy~(3+)掺杂浓度的CaWO_4∶Eu3+,Dy~(3+)荧光粉。通过使用TEM和XRD对荧光体的形貌和结构进行表征,荧光分光光度计测试其光致发光谱。实验结果表明,在395 nm光源激发下,Dy~(3+)掺杂浓度为0.5%(摩尔分数)和8%时会极大地提高Eu3+的特征发光;在272 nm光源激发下,0.5%Dy~(3+)掺杂会提高Eu3+的特性发光,而Dy~(3+)高浓度掺杂则抑制CaWO_4基质和Eu3+的特征发光。因此,在紫外光激发下低浓度掺杂Dy~(3+)可以增强CaWO_4∶Eu3+荧光材料的发光特性。  相似文献   

15.
Tm~(3+) and Dy~(3+) co-doped Ba_(0.05)Sr_(0.95)WO_4 phosphors were synthesized by a low temperature combustion method. The structures of the samples were SrWO_4 phase and were identified by X-ray diffraction. The surface topographies of Ba_(0.05)Sr_(0.91)WO_4:0.01 Tm~(3+) 0.03 Dy~(3+) were tested by scanning electron microscopy. The particles are ellipsoid, and their average diameter is approximately 0.5 μm. The emission spectra of Ba_(0.05)Sr_(0.95)WO_4:Tm~(3+) show a peak at 454 nm which belongs to the ~3 H_6→~1 D_2 transition of Tm~(3+), and the optimum doping concentration of Tm~(3+) ions was 0.01. The emission spectra of Ba_(0.05)Sr_(0.95)WO_4:Dy~(3+) consist of the ~4 F_(9/2)→~6 H_(13/2) dominant transition located at 573 nm, the weaker ~4 F_(9/_2→~6 H_(15/2) transition located at 478 and 485 nm. and the weakest ~4 F_(9/2)→~6 H_(11/2) transition located at660 nm, and the optimum doping concentration of Dy~(3+) ions was 0.05. A white light is achieved from Tm~(3+) and Dy~(3+) co-doped Ba_(0.05)Sr_(0.95)MoO_4 crystals excited at 352-366 nm. With the doping concentration of Tm~(3+) fixed at 0.01, the luminescence of Ba_(0.05)Sr_(0.95)MoO_4:Tm~(3+)Dy~(3+) is closest to standard white-light emissions when the concentration of Dy~(3+) is 0.03; the chromaticity coordinates are(0.321,0.347), and the color temperature is 6000 K.  相似文献   

16.
采用高温固相法在1200℃、保温3 h的条件下制备了(Sc,Y)(V_(1-x)B_x)O_(4-x):Eu~(3+)(0≤x≤0.5)系列样品,通过荧光光谱仪、X射线衍射仪(XRD)、扫描电子显微镜(SEM)对粉体的荧光性能、结构及形貌进行测试和表征。结果表明,在365 nm紫外光激发下,荧光粉主发射波长位于620 nm,对应于Eu~(3+)的~5D_0→~7F_2跃迁,当x=0.1时,相对发光强度是Sc_(0.73)Y_(0.2)VO_4:Eu_(0.07)~(3+)的1.6倍;在620 nm监控下,存在一个峰值位于337 nm的极强宽带吸收带和396 nm处的弱激发带。与(Sc,Y)VO_4:Eu~(3+)相比,硼的掺杂没有改变样品的四方晶系体心结构,且形貌未发生明显改变,粒度分布均匀、无明显团聚。在397 nm激发下,荧光粉的内量子效率提升了2倍,当温度升高至200℃,其相对发光强度仍保持在92%,显现出高的内量子效率和低的热淬灭效应,适合近紫外激发白光发光二极管(LED)用红色荧光粉。  相似文献   

17.
《稀土》2017,(4)
通过了高温固相法制备NaSrB_5O_9:n%Dy~(3+)(n=0.5,0.8,1.0,1.5,2.0)系列荧光粉,利用X射线衍射仪器、荧光光谱仪对材料的结构和发光性能进行了测试和分析。XRD测试结果表明,掺Dy~(3+)量不应超过2%。荧光光谱图显示,在582 nm监测波长下的最佳激发波长为341 nm,在341 nm波长激发下有476 nm(B)和582 nm(Y)两个主要特征峰,其中582 nm处的特征峰最强。随着Dy~(3+)浓度的增大,发射峰Y和B的强度比值Y/B没有明显变化,荧光粉表现出较好的发光稳定性。从发射光谱可知,当掺Dy~(3+)量超过1.5%时发生了浓度猝灭,说明最佳掺杂浓度为1.5%。激发波长取341 nm时,NaSrB_5O_9:1.5%Dy~(3+)的CIE色度坐标为(0.407,0.423),色温为3691 K,发光为暖白光。  相似文献   

18.
《中国钨业》2017,(6):60-66
采用高温固相法合成了一系列Er~(3+)单掺和Er~(3+)/Yb~(3+)共掺NaY(MoO_4)_2荧光粉样品。通过X射线衍射仪、扫描电子显微镜、激光粒度仪和荧光光谱仪分别对样品的相纯度、微观形貌、粒径分布和上转换发光性能进行了表征。在980 nm激光激发下,Er~(3+)单掺和Er~(3+)/Yb~(3+)共掺样品的发射光谱中均能观测到中心波长位于536 nm、560 nm的上转换绿光发射和位于660 nm的红光发射,分别归因于Er~(3+)的~2H~(11/2)→~4I_(15/2)、~4S_(3/2)→~4I_(15/2)和~4F_(9/2)→4I_(15/2)能级跃迁。在Er~(3+)单掺体系中共掺Yb~(3+),可以轻松实现由上转换绿光到红光的转变。NaY_(1-x-y)(MoO_4)_2∶x Er~(3+),y Yb~(3+)样品中最优的Er~(3+)/Yb~(3+)掺杂浓度和最佳的烧结温度为x=0.04、y=0.5、T=850℃。基于泵浦依赖和能级图,在Er~(3+)单掺和Er~(3+)/Yb~(3+)共掺体系上转换发光过程中所涉及的能量转移机制被详细讨论。  相似文献   

19.
A series of reddish orange phosphors Ba_3Gd_(1-x)(PO_4)_3:xSm~(3+)(x = 0.02.0.04,...,0.12) were prepared by the high-temperature solid-state reaction. X-ray powder diffraction(XRD) and diffuse reflectance and photoluminescence spectra were utilized to characterize the structure and spectral properties of the phosphors. The phosphors have strong absorption in the near-UV region. CIE chromaticity coordinates of the phosphors are located in the reddish orange region since the strongest emission band is around 598 nm and related to the ~4 G_(5/2)→~6 H_(7/2) transition of Sm~(3+). Optimal concentration of Sm~(3+) in the phosphors is about 6.0 at%. The quantum yield of the Ba_3Gd_(0.94)(PO_4)_3:0,06 Sm~(3+) under excitation at 403 nm is about 52.07%. Temperature dependent photoluminescence spectra of the Ba_3Gd_(0.94)(PO_4)_3:0.06 Sm~(3+) were measured and the phosphor exhibits high thermal stability of emission. All the results show that the Ba_3Gd(PO_4)_3:Sm~(3+) phosphor may be a potential red phosphor for near-UV based white LEDs.  相似文献   

20.
《稀土》2021,(1)
以Gd_2O_3、Eu_2O_3和NH_4HSO_4为原料,采用微波辐射法合成了Gd_2O_2SO_4∶Eu~(3+)发光材料。并用X射线衍射仪、扫描电镜、荧光光谱仪对所得发光材料的物相、形貌和发光性能进行了表征。结果表明,微波辐射30 min可以合成纯相Gd_2O_2SO_4∶Eu~(3+)发光材料,晶体结构为正交晶系,与Gd_2O_2SO_4结构相同;其形貌不规则,存在团聚现象;Gd_2O_2SO_4∶Eu~(3+)发光材料呈红光发射,发射光谱由一系列铕离子的~5D_0→~7F_j(j=0,1,2,3,4)能级跃迁的尖峰组成,激发光谱主要由处于200 nm~350 nm的宽激发带和位于397 nm和466 nm的窄激发带组成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号