首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A comparative evaluation of the macrodilution method and the Alamar colorimetric method for the susceptibility testing of amphotericin B, fluconazole, and flucytosine was conducted with 134 pathogenic yeasts. The clinical isolates included 28 Candida albicans, 17 Candida tropicalis, 15 Candida parapsilosis, 12 Candida krusei, 10 Candida lusitaniae, 9 Candida guilliermondii, 18 Torulopsis glabrata, and 25 Cryptococcus neoformans isolates. The macrodilution method was performed and interpreted according to the recommendations of the National Committee for Clinical Laboratory Standards (document M27-P), and the Alamar colorimetric method was performed according to the manufacturer's instructions. For the Alamar colorimetric method, MICs were determined at 24 and 48 h of incubation for Candida species and T. glabrata and at 48 and 72 h of incubation for C. neoformans. The overall agreement within +/- 1 dilution for Candida species and T. glabrata against the three antifungal agents was generally good, with the values for amphotericin B, fluconazole, and flucytosine being 85.3, 77.9, and 86.2%, respectively, at the 24-h readings and 69.3, 65.2, and 97.2%, respectively, at the 48-h readings. Most disagreement was noted with fluconazole against C. tropicalis and T. glabrata. Our studies indicate that determination of MICs at 24 h by the Alamar colorimetric method is a valid alternate method for testing amphotericin B, fluconazole, and flucytosine against Candida species but not for testing fluconazole against C. tropicalis and T. glabrata. For flucytosine, much better agreement can be demonstrated against Candida species and T. glabrata at the 48-h readings by the Alamar method. Excellent agreement within +/- dilution can also be observed for amphotericin B, fluconazole, and flucytosine (80, 96, and 96%, respectively) against c. neoformans when the MICs were determined at 72 h by the Alamar method.  相似文献   

2.
National Committee for Clinical Laboratory Standards (NCCLS) standard guidelines are available for the antifungal susceptibility testing of common Candida spp. and Cryptococcus neoformans, but NCCLS methods may not be the most efficient and convenient procedures for use in the clinical laboratory. MICs of amphotericin B, fluconazole, flucytosine, itraconazole, and ketoconazole were determined by the commercially prepared Sensititre YeastOne Colorimetric Antifungal Panel and by the NCCLS M27-A broth microdilution method for 1,176 clinical isolates of yeasts and yeast-like organisms, including Blastoschizomyces capitatus, Cryptococcus spp., 14 common and emerging species of Candida, Hansenula anomala, Rhodotorula spp., Saccharomyces cerevisiae, Sporobolomyces salmonicolor, and Trichosporon beigelii. Colorimetric MICs of amphotericin B corresponded to the first blue well (no growth), and MICs of the other agents corresponded to the first purple or blue well. Three comparisons of MIC pairs by the two methods were evaluated to obtain percentages of agreement: 24- and 48-h MICs and 24-h colorimetric versus 48-h reference MICs. The best performance of the YeastOne panel was with 24-h MICs (92 to 100%) with the azoles and flucytosine for all the species tested, with the exception of C. albicans (87 to 90%). For amphotericin B, the best agreement between the methods was with 48-h MIC pairs (92 to 99%) for most of the species tested. The exception was for isolates of C. neoformans (76%). These data suggest the potential value of the YeastOne panel for use in the clinical laboratory.  相似文献   

3.
The use of Etest strips for antimicrobial susceptibility testing is a new and promising method with broad applications in microbiology. Since these strips contain a predefined continuous gradient of a drug, it is possible to obtain a reproducible, quantitative MIC reading. We performed a prospective and double-blinded study to compare the Etest and National Committee for Clinical Laboratory Standards (Villanova, Pa.) broth macrodilution methods for determining the MICs of fluconazole, itraconazole, and ketoconazole for 100 clinical isolates (25 Candida albicans, 25 Cryptococcus neoformans var. neoformans, 20 Torulopsis [Candida] glabrata, 15 Candida tropicalis, and 15 Candida parapsilosis). The Etest method was performed according to the manufacturer's instructions, and the reference method was performed according to National Committee for Clinical Laboratory Standards document M27-P guidelines. Despite differences between results for some species-drug combinations, Etest and macrobroth MICs were, in general, in good agreement. The MIC agreement rates for the two methods, within +/- 1 dilution, were 71% for ketoconazole, 80% for fluconazole, and 84% for itraconazole. According to our data, Etest has potential utility as an alternative method.  相似文献   

4.
The MICs and minimum fungicidal concentrations (MFCs) of amphotericin B, fluconazole, ketoconazole, flucytosine, miconazole, and itraconazole for 12 isolates of filamentous opportunistic fungi (Scopulariopsis sp., Paecilomyces sp., Cladosporium spp., and Cladophialophora sp.) were determined by a broth microdilution method with hyphal and conidial inocula. With hyphal inocula MICs and MFCs were practically always substantially higher. Only 25% of the 60 MIC comparisons showed discrepancies of twofold or less, while the remaining comparisons showed much larger differences.  相似文献   

5.
In this study we investigated the antifungal susceptibility of 285 strains of Candida albicans isolates at Kinki University Hospital from March 1995 to December 1996. The antifungal agents tested were fluconazole, miconazole, intraconazole, amphotericin B and flucytosine. The susceptibility testing were performed according to the broth microdilution method standardized by National Committee for Clinical Laboratory Standards (M27-T). Most isolates of C. albicans showed relatively a low MIC value and the MIC90S were calculated at 1 microgram/ml; fluconazole, 0.125 microgram/mg; miconazole, 0.06 microgram/ml; itraconazole, 1 microgram/ml; amphotericin B, 0.25 microgram/ml; flucytosine. There was only one strain that showed high resistance against fluconazole and it showed cross-resistance against miconazole and itraconazole. There were two flucytosine resistant strains. The MICs of amphotericin B were tightly clustered and resistant strain were not observed.  相似文献   

6.
The antifungal susceptibility of 35 Candida lusitaniae isolates was determined in vitro by the National Committee for Clinical Laboratory Standards (NCCLS) M27-P macrodilution methodology. All the isolates were susceptible to ketoconazole, itraconazole and fluconazole. Of the 35 isolates, eight (23%) were resistant to flucytosine. For amphotericin B, M27-P yielded a narrow range of MICs (0.06-0.5 mg/L). We therefore investigated the activity of this drug by reading MICs at 72 h and by using alternative media, namely casitone complex medium (CCM) and antibiotic medium 3 (M-3). Reading at 72 h did not generate reproducible results. CCM and M-3 provided better discrimination between the isolates but did not change the rank order of the MICs. We thus concluded that all the isolates were susceptible to amphotericin B. We also conducted an evaluation with the Etest method according to the manufacturer's instructions with RPMI 1640 agar, CCM and the alternative semi-synthetic medium (SSM). For RPMI 1640, agreements +/-2 dilutions were 58% for amphotericin B, 92% for flucytosine, 57% for ketoconazole, 92% for fluconazole and 74% for itraconazole. CCM did not improve the agreement rates between the two methods but it led to better growth of all the isolates. The suitability of SSM was pointed out with itraconazole. The poor agreement rates for amphotericin B and ketoconazole call for further evaluation of the Etest method to assess several drug-organism combinations.  相似文献   

7.
A method using a commercially prepared colorimetric microdilution panel (ASTY; Kyokuto Pharmaceutical Industrial Co., Ltd.) was compared in four different laboratories with the National Committee for Clinical Laboratory Standards (NCCLS) reference microdilution method by testing 802 clinical isolates of Candida spp. (C. albicans, C. glabrata, C. tropicalis, C. parapsilosis, C. krusei, C. lusitaniae, C. guilliermondii, C. lipolytica, C. rugosa, and C. zeylanoides) against amphotericin B, 5-fluorocytosine (5FC), fluconazole, and itraconazole. Reference MIC endpoints were established after 48 h of incubation, and ASTY endpoints were established after 24 and 48 h of incubation. ASTY endpoints were determined to be the time at which the color of the first well changed from red (indicating growth) to purple (indicating growth inhibition) or blue (indicating no growth). Excellent agreement (within 2 dilutions) between the reference and colorimetric MICs was observed. Overall agreement was 93% at 24 h and 96% at 48 h. Agreement ranged from 90% with itraconazole and 5FC to 96% with amphotericin B at 24 h and from 92% with itraconazole to 99% with amphotericin B and 5FC at 48 h. The ASTY colorimetric microdilution panel method appears to be comparable to the NCCLS reference method for testing the susceptibilities of Candida spp. to a variety of antifungal agents.  相似文献   

8.
An international program of surveillance of bloodstream infections (BSIs) in the United States, Canada, and South America between January and December 1997 detected 306 episodes of candidemia in 34 medical centers (22 in the United States, 6 in Canada, and 6 in South America). Eighty percent of the BSIs were nosocomial and 50% occurred in patients hospitalized in an intensive care unit. Overall, 53.3% of the BSIs were due to Candida albicans, 15.7% were due to C. parapsilosis, 15.0% were due to C. glabrata, 7.8% were due to C. tropicalis, 2.0% were due to C. krusei, 0.7% were due to C. guilliermondii, and 5.8% were due to Candida spp. However, the distribution of species varied markedly by country. In the United States, 43.8% of BSIs were due to non-C. albicans species. C. glabrata was the most common non-C. albicans species in the United States. The proportion of non-C. albicans BSIs was slightly higher in Canada (47.5%), where C. parapsilosis, not C. glabrata, was the most common non-C. albicans species. C. albicans accounted for 40.5% of all BSIs in South America, followed by C. parapsilosis (38.1%) and C. tropicalis (11.9%). Only one BSI due to C. glabrata was observed in South American hospitals. Among the different species of Candida, resistance to fluconazole (MIC, > or = 64 microg/ml) and itraconazole (MIC, > or = 1.0 microg/ml) was observed with C. glabrata and C. krusei and was observed more rarely among other species. Isolates of C. albicans, C. parapsilosis, C. tropicalis, and C. guilliermondii were all highly susceptible to both fluconazole (99.4 to 100% susceptibility) and itraconazole (95.8 to 100% susceptibility). In contrast, 8.7% of C. glabrata isolates (MIC at which 90% of isolates are inhibited [MIC90], 32 microg/ml) and 100% of C. krusei isolates were resistant to fluconazole, and 36.9% of C. glabrata isolates (MIC90, 2.0 microg/ml) and 66.6% of C. krusei isolates were resistant to itraconazole. Within each species there were no geographic differences in susceptibility to fluconazole or itraconazole.  相似文献   

9.
Candida species test results with two broth macrodilution antifungal susceptibility methods were compared using 655 clinical isolates, and the frequency of fluconazole resistance and phenotypes of azole cross resistance are detailed. A method with an 80% inhibition endpoint (as compared to clear tube endpoint) suggested greater fluconazole susceptibility to C. albicans but had a less pronounced effect on C. glabrata, and seemed to have a negligible influence on results with C. parapsilosis and C. tropicalis. The latter were grouped as susceptible and resistant (based on achievable blood levels), respectively, by both methods. Cross resistance was method dependent and more pronounced with itraconazole than ketoconazole. In vivo correlations are needed to validate the groupings proposed by any in vitro method.  相似文献   

10.
Since 1991 information on yeast isolates from blood cultures has been recorded prospectively from all microbiological laboratories (5 university and 16 county or local hospital laboratories) in Norway (population, 4.3 million). From 1991 to 1996 a total of 571 episodes of fungemia in 552 patients occurred (1991, 109 episodes; 1992, 81 episodes; 1993, 93 episodes; 1994, 89 episodes; 1995, 98 episodes; and 1996, 101 episodes). The fungemia rates per 10,000 patient days were 0.29 in 1991 and 0.27 in 1996. The average rates for the years 1991 to 1996 were 0.37 for the university laboratories and 0.20 for the other laboratories. These rates are low compared to the rate (0. 76) in five Dutch university hospitals in 1995 and the rate (2.0) in Iowa in 1991. The four most frequently isolated species were Candida albicans (66%), Candida glabrata (12.5%), Candida parapsilosis (7.6%), and Candida tropicalis (6.4%). The incidences of both C. albicans (range, 63 to 73%) and C. glabrata (range, 8.4 to 15.7%) varied somewhat throughout this period, but no significant increase or decrease was noted. MICs of amphotericin B, flucytosine, and fluconazole were determined for 89% of the isolates. All were susceptible to amphotericin B, and only 29 (5.6%) strains had decreased susceptibility to flucytosine. All C. albicans isolates were susceptible to fluconazole. The percentage of yeast isolates with decreased susceptibility to fluconazole (MICs, >/=16 microgram/ml) did increase, from 9.6% in 1991 and 1992 to 12.2% in 1994, 16.1% in 1995, and 18.6% in 1996. This was largely due to increases in the percentages of resistant C. glabrata and Candida krusei strains in the last 2 years. Compared to the incidence in other countries, it is remarkable that Norway has such a low and constant incidence of fungemia. A possible reason for this difference might be a restricted antibiotic use policy in Norway.  相似文献   

11.
OBJECTIVE: To make an analysis of fungemia in HIV-infected patients in our hospital. PATIENTS AND METHODS: We retrospectively (1989-1997) studied all HIV-infected patients with positive blood cultures for Candida sp., Cryptococcus neoformans or any other fungal infection. RESULTS: C. neoformans was isolated in 11 patients (10 men and 1 woman): Six were treated with amphotericin B and 5 with fluconazole. 2 patients died during the acute phase and the infection relapsed in 3. Blood culture for Candida sp. were positive in 9 (8 men and 1 woman): only a case was nosocomial. Seven patients were intravenous drug users and the presenting manifestations were autolimited candidemia in 3, aortic and tricuspid endocarditis in 1 and 2 cases respectively and pneumonia in another one. Six C. albicans, 2 C. krusei and 1 C. glabrata were isolated. 3 patients received amphotericin B and 3 received fluconazole. 2 patients suffering from endocarditis died and so did the patient with C. glabrata infection. A patient, who denied having travelled to endemic areas, developed histoplasmosis; blood culture was positive for H. capsulatum. He initially had a good response to amphotericin B and itraconazole. CONCLUSIONS: Fungemia is not frequent in HIV-infected patients. Cryptococcosis and histoplasmosis occur in advanced HIV-patients and candidemia is fundamentally associated with intravenous drug use.  相似文献   

12.
Electrophoretic karyotype (EK) was used to type 13 clinical isolates of Cryptococcus neoformans from eight AIDS patients. All of the isolates were also tested for their in vitro susceptibilities to fluconazole, itraconazole, D0870, flucytosine, and amphotericin B by a broth macrodilution technique performed according to the National Committee for Clinical Laboratory Standards recommendations. Although all strains were isolated from a limited geographic area, DNA typing showed a wide genetic variation in this group of patients, yielding seven different patterns. Two patients in whom C. neoformans was isolated in the same time period shared similar EK profiles, suggesting the possibility of cross-infection. In three patients, sequential isolates were evaluated: in two of them, EK analysis showed the persistence of the same genotype throughout the infection, whereas from the third, two isolates of C. neoformans with two different DNA profiles were obtained. Despite the small number of strains considered in this study, our susceptibility data indicate that C. neoformans isolates are very susceptible to the new triazoles.  相似文献   

13.
OBJECTIVE: Fifty clinical yeast isolates, representing equally Candida albicans, Candida krusei, Candida parapsilosis, Candida tropicalis, and Torulopsis glabrata, were tested in vitro for their susceptibility to terconazole and fluconazole. STUDY DESIGN: The minimal inhibitory concentrations of terconazole and fluconazole were determined by use of a proposed standardized broth macrodilution assay. Also, the response of selected yeast isolates to 25 micrograms of either drug was measured by agarose disk diffusion experiments. RESULTS: For all species the minimum inhibitory concentrations for terconazole were significantly lower than those for fluconazole (p < 0.05). In fact, for each individual isolate the minimum inhibitory concentration of terconazole was consistently lower than that of fluconazole. Differences in the geometric mean of terconazole and fluconazole minimum inhibitory concentrations were largest among C. krusei and T. glabrata, followed by C. parapsilosis, C. tropicalis, and C. albicans, in order of decreasing difference. Disk diffusion experiments suggested that terconazole is a more effective fungistatic agent than fluconazole is. CONCLUSION: Terconazole may be more effective than fluconazole against yeast species other than C. albicans.  相似文献   

14.
The in vitro activity of a naturally occurring complex carbohydrate, CAN-296, was evaluated by testing 132 clinical and ATCC isolates of yeast and Aspergillus fumigatus, many of which were azole-resistant. The in vitro susceptibility tests were performed by standardized broth micro- and macrodilution methods and results were compared with those obtained for amphotericin B, fluconazole, ketoconazole, flucytosine and the pneumocandin L-733,560. All tested Candida species showed highly uniform susceptibility to CAN-296 at concentrations of 0.078 to 0.312 microgram/ml; non-albicans Candida were as susceptible to CAN-296 as the Candida albicans strains. Multi-azole-resistant Candida species were highly sensitive to CAN-296. Minimum inhibitory concentration measurements did not differ from minimum lethal concentrations by more than two-fold for all tested Candida species. Aspergillus fumigatus, on the other hand, showed only moderate susceptibility to CAN-296. The kinetics of the anti-Candida activity of CAN-296 was investigated by kill-curve experiments using C. albicans and C. glabrata and the results were compared with those obtain for amphotericin B. CAN-296 was found to be rapidly fungicidal in concentrations ranging from 4-16 fold the mean MIC value. The broad spectrum of anti-Candida activity together with the rapid fungicidal effect make this complex carbohydrate a promising agent for clinical use.  相似文献   

15.
OBJECTIVES: To determine the proportion of fluconazole-resistant Candida albicans isolates that have clinically significant cross-resistance to itraconazole or ketoconazole, that is sufficient to result in failure of these agents at their standard doses (200 and 400 mg daily for 7 days, respectively). METHODS: Seven hundred C. albicans isolates from HIV-positive patients with oral candidosis underwent susceptibility testing using a relative growth method, for which cut-off values corresponding to clinical drug failure have been established. RESULTS: A total of 431 isolates were fully azole-susceptible and three main resistance patterns were detected: isolates resistant to fluconazole alone (n = 100); isolates resistant to fluconazole and ketoconazole but susceptible to itraconazole (n = 94); and isolates resistant to all three drugs (n = 50). No isolates were consistently resistant to ketoconazole without being fluconazole-resistant, and no itraconazole resistance was detected without ketoconazole resistance. Resistance to fluconazole alone was more common in specimens obtained soon after first clinical fluconazole failure, whereas specimens from patients with a longer history of fluconazole-unresponsive candidosis were more likely to be infected with cross-resistant isolates. Median days of prior azole exposure and cumulative fluconazole dose were significantly less for those with isolates resistant to fluconazole alone than for those with ketoconazole cross-resistant isolates, who had received less azole therapy and smaller cumulative fluconazole doses than those with isolates cross-resistant to all three drugs (although not statistically significant). After the diagnosis of fluconazole-unresponsive candidosis, increasing cumulative doses of itraconazole solution were associated with increasing likelihood of cross-resistance. CONCLUSIONS: Clinically significant cross-resistance to other azoles may occur in fluconazole-resistant isolates of C. albicans, although initially most isolates are not cross-resistant and the detection of cross-resistant isolates is associated with a history of greater prior azole exposure. Patients who have been treated for fluconazole-resistant candidosis for longer and with greater cumulative doses of itraconazole solution tend to become infected with increasingly cross-resistant isolates of C. albicans.  相似文献   

16.
GM 193663, GM 211676, GM 222712, and GM 237354 are new semisynthetic derivatives of the sordarin class. The in vitro antifungal activities of GM 193663, GM 211676, GM 222712, and GM 237354 against 111 clinical yeast isolates of Candida albicans, Candida kefyr, Candida glabrata, Candida parapsilosis, Candida krusei, and Cryptococcus neoformans were compared. The in vitro activities of some of these compounds against Pneumocystis carinii, 20 isolates each of Aspergillus fumigatus and Aspergillus flavus, and 30 isolates of emerging less-common mold pathogens and dermatophytes were also compared. The MICs of GM 193663, GM 211676, GM 222712, and GM 237354 at which 90% of the isolates were inhibited (MIC90s) were 0.03, 0.03, 0.004, and 0.015 microg/ml, respectively, for C. albicans, including strains with decreased susceptibility to fluconazole; 0.5, 0.5, 0.06, and 0.12 microg/ml, respectively, for C. tropicalis; and 0.004, 0.015, 0.008, and 0.03 microg/ml, respectively, for C. kefyr. GM 222712 and GM 237354 were the most active compounds against C. glabrata, C. parapsilosis, and Cryptococcus neoformans. Against C. glabrata and C. parapsilosis, the MIC90s of GM 222712 and GM 237354 were 0.5 and 4 microg/ml and 1 and 16 microg/ml, respectively. The MIC90s of GM 222712 and GM 237354 against Cryptococcus neoformans were 0.5 and 0.25 microg/ml, respectively. GM 193663, GM 211676, GM 222712, and GM 237354 were extremely active against P. carinii. The efficacies of sordarin derivatives against this organism were determined by measuring the inhibition of the uptake and incorporation of radiolabelled methionine into newly synthesized proteins. All compounds tested showed 50% inhibitory concentrations of <0.008 microg/ml. Against A. flavus and A. fumigatus, the MIC90s of GM 222712 and GM 237354 were 1 and 32 microg/ml and 32 and >64 microg/ml, respectively. In addition, GM 237354 was tested against the most important emerging fungal pathogens which affect immunocompromised patients. Cladosporium carrioni, Pseudallescheria boydii, and the yeast-like fungi Blastoschizomyces capitatus and Geotrichum clavatum were the most susceptible of the fungi to GM 237354, with MICs ranging from /=2 microg/ml. In summary, we concluded that some sordarin derivatives, such as GM 222712 and GM 237354, showed excellent in vitro activities against a wide range of pathogenic fungi, including Candida spp., Cryptococcus neoformans, P. carinii, and some filamentous fungi and emerging invasive fungal pathogens.  相似文献   

17.
Before 1978, amphotericin B and flucytosine were the only drugs available for the treatment of systemic fungal infections. The imidazoles, miconazole and ketoconazole, were introduced during the next 3 years. Intravenously administered miconazole served a limited therapeutic role and is no longer available. Orally administered ketoconazole, an inexpensive, effective, and convenient option for treating mucosal candidiasis, was widely used for a decade because it was the only available oral therapy for systemic fungal infections. During the 1990s, use of ketoconazole diminished because of the release of the triazoles--fluconazole and itraconazole. Fluconazole is less toxic and has several pharmacologic advantages over ketoconazole, including penetration into the cerebrospinal fluid. In addition, it has superior efficacy against systemic candidiasis, cryptococcosis, and coccidioidomycosis. Despite a myriad of drug interactions and less favorable pharmacologic and toxicity profiles in comparison with fluconazole, itraconazole has become a valuable addition to the antifungal armamentarium. It has excellent activity against sporotrichosis and seems promising in the treatment of aspergillosis. Itraconazole has replaced ketoconazole as the therapy of choice for nonmeningeal, non-life-threatening cases of histoplasmosis, blastomycosis, and paracoccidioidomycosis and is effective in patients with cryptococcosis and coccidioidomycosis, including those with meningitis. Further investigation into the development of new antifungal agents is ongoing.  相似文献   

18.
The candidacidal activity of nitric oxide (NO) as delivered by a class of compounds termed diazeniumdiolates has been investigated. Diazeniumdiolates are stable agents capable of releasing NO in a biologically usable form at a predicted rate, and three such compounds were examined for activity. One compound, (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1- ium-1, 2-diolate (DETA-NO), proved to be most suitable for examining NO activity due to its relatively long half-life (20 h) and because of limited candidacidal activity of the uncomplexed DETA nucleophile. DETA-NO was active against six species of Candida for which the MICs necessary to inhibit 50% growth (MIC50s) ranged from 0.25 to 1.0 mg/ml. C. parapsilosis and C. krusei were the most susceptible to the compound. In addition to a determination of NO effects alone, the complex was utilized to investigate the synergistic potential of released NO in combination with ketoconazole, fluconazole, and miconazole. Activity was investigated in vitro against representative strains of Candida albicans, C. krusei, C. parapsilosis, C. tropicalis, C. glabrata, and C. dubliniensis. Determination of MIC50, MIC80 and MICs indicated that DETA-NO inhibits all strains tested, with strains of C. parapsilosis and C. krusei being consistently the most sensitive. The combination of DETA-NO with each azole was synergistic against all strains tested as measured by fractional inhibitory concentration indices that ranged from 0.1222 to 0.4583. The data suggest that DETA-NO or compounds with similar properties may be useful in the development of new therapeutic strategies for treatment of Candida infections.  相似文献   

19.
At our community teaching hospital between August 1994 and August 1995, Candida glabrata accounted for 14% of all Candida isolates and for 31% of urinary Candida isolates. The culture site was urine for 68% of C. glabrata isolates compared to 30% of all Candida isolates (p < 0.001, chi 2). To study the association between C. glabrata and isolation from the urine, we analyzed all available C. glabrata urinary isolates over a 3-month period (23 isolates from 20 patients) using electrophoretic karyotyping, random amplified polymorphic DNA analysis, and fluconazole susceptibility testing. Random amplified polymorphic DNA generated eight types, although electrophoretic karyotyping generated 17 types. Combining the two methods resulted in 19 types indicating that urinary C. glabrata strains at our hospital are genetically diverse and the association between C. glabrata and urinary tract isolation does not appear to be due to horizontal transmission of a single or small number of strains. In vitro susceptibility tests showed that C. glabrata isolates from patients receiving fluconazole had significantly higher minimum inhibitory concentrations to fluconazole than those not receiving fluconazole (p < 0.05). Despite a limited number of patients and isolates, our data suggest that selection of less susceptible organisms by the presence of antifungal agents may be an important contributor to increased urinary isolation of C. glabrata from patients in our hospital.  相似文献   

20.
Drug resistance is emerging in many important microbial pathogens, including Candida albicans. We performed fungal susceptibility tests with archived isolates obtained from 1984 through 1993 and fresh clinical isolates obtained from 1994 through 1997 by testing their susceptibilities to fluconazole, ketoconazole, and miconazole and compared the results to the rate of fluconazole use. All isolates recovered prior to 1993 were susceptible to fluconazole. Within 3 years of widespread azole use, we detected resistance to all agents in this class. In order to assess the current prevalence of resistant isolates in our hematologic malignancy and transplant patients, we obtained rectal swabs from hospitalized, non-AIDS, immunocompromised patients between June 1995 and January 1996. The swabs were inoculated onto sheep's blood agar plates containing 10 microg of vancomycin and 20 microg of gentamicin/ml of agar. One hundred one yeasts were recovered from 97 patients and were tested for their susceptibilities to amphotericin B, fluconazole, flucytosine, ketoconazole, and miconazole. The susceptibility pattern was then compared to those for all clinical isolates obtained throughout the medical center. The antifungal drug histories for each patient were also assessed. The yeasts from this surveillance study were at least as susceptible as the overall hospital strains. There did not appear to be a direct linkage between prior receipt of antifungal agent therapy and carriage of a new, drug-resistant isolate. Increased resistance to newer antifungal agents has occurred at our medical center, but it is not focal to any high-risk patient population that we studied. Monitoring of susceptibility to antifungal agents appears to be necessary for optimizing clinical therapeutic decision making.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号