首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对托贝莫来石(TOB)进行加热与酸化复合改性,成功制备出比表面积为570 m^(2)/g的酸化改性托贝莫来石(AHTOB),并用X射线衍射、N2吸附-脱附对改性托贝莫来石进行了结构表征和表面积及孔径分析。通过静态吸附实验探讨了3种吸附剂对亚甲基蓝溶液(MB)的吸附性能,分析改性TOB对MB的吸附机制。考察了不同吸附剂及其加入量、溶液p H值、MB初始浓度、吸附时间及温度对吸附行为的影响,研究了AHTOB对MB溶液吸附的热力学和动力学行为。结果表明:对50 m L,浓度为10 mg/L的MB进行吸附,未改性TOB、热改性HTOB以及酸化改性AHTOB对MB的吸附率分别达到50、53.72%和97.35%。对于不同初始浓度的MB,TOB和HTOB的最大吸附量可达102.36 mg/g和113.80 mg/g,AHTOB的吸附量达到248.01 mg/g,经过加热与酸化复合改性的AHTOB对MB的吸附效率有了明显的提升,得到了吸附MB溶液的最佳外界条件:p H值为5~7,震荡时间为30 min,温度为20~25℃。  相似文献   

2.
对托贝莫来石的结构研究现状进行了综述,重点整理了托贝莫来石(TOB)各同质异像体的结构和热行为。归纳总结了TOB合成过程中,合成条件对TOB形成过程的影响机制,并分析了合成条件在控制TOB形成特定同质异像体时的作用与机理,提出了未来TOB相关的研究方向。  相似文献   

3.
不同粒径改性粉煤灰对磷酸根吸附性能的影响   总被引:1,自引:0,他引:1  
废水排放过量的磷导致水体污染日益严重,将粉煤灰通过化学改性制备成了水化硅酸钙吸附剂,研究了改性吸附剂对磷酸根的吸附效果。利用XRD, SEM及BET比表面积等手段对粒度分级前后的吸附剂进行表征,研究不同粒级吸附剂对磷酸根的吸附性能,并考察其吸附机理。结果表明,不同粒级的吸附剂其化学成分出现了明显的偏析现象,孔隙结构也差异显著。相比其他粒径下的吸附剂颗粒,颗粒粒径在50?75 μm时,吸附剂中钙和硅含量较多,铝、铁和镁含量较低,水化硅酸钙组分含量最高,且伴有含铝的托贝莫来石晶体出现,钙离子的增加使其可以与更多的磷酸根结合形成沉淀。同时此粒径下具有较高的比表面积及孔隙度,疏松多孔的结构为钙离子提供更多活性位点。当使用粒径在50?75 μm的吸附剂吸附磷酸根时,磷的饱和吸附量可达到17.1 mg/g,比未分级的吸附剂高19.58%。  相似文献   

4.
以低品位凹凸棒石(APT)黏土为原料,在硅酸钠和氯化钙存在的条件下,通过一步水热法制备了新型介孔硅酸盐吸附剂.采用红外光谱(FTIR)、X-射线衍射(XRD)、扫描电镜(SEM)和BET孔结构分析等手段表征了吸附剂的结构、形貌和理化性质.结果表明,反应初始Si/Ca比对产物结构和形貌有显著影响,在Si/Ca比为3:1和2:1条件下,APT形成了介孔硅钙石型吸附剂,而在Si/Ca比为1:1和1:2条件下,则形成了1.1 nm铝取代托贝莫来石.在Si/Ca比2:1条件下制备的最优硅酸盐吸附剂比的表面积和表面负电位分别达到了APT黏土的3.42和1.83倍.吸附研究表明,在Si/Ca比为2:1条件下制备的硅钙石型吸附剂对Cd(II)的吸附量达到了136.87 mg/g,是APT黏土吸附量的6.4倍,吸附速率也有明显提高.  相似文献   

5.
利用环氧氯丙烷和半胱氨酸对蔗渣进行改性制备新型吸附剂。研究了改性蔗渣(MB)对Cd2+的吸附行为并用FTIR表征了MB。结果表明,MB含有的羧基有利于脱除废水中的Cd2+,其吸附行为符合Langmuir模型,低温有利于MB吸附反应的进行。在实验范围内,25℃时MB对Cd2+处理的最大饱和吸附量Qmax为1.092mmol/g,而蔗渣仅为0.233 mmol/g。  相似文献   

6.
赵国升  崔月  姚玖瑜  刘伟  姜大雨 《硅酸盐通报》2015,34(11):3180-3185
以原矿粘土为原料,采用湿选工艺法制备了球粘土粉体,并通过X-射线荧光光谱仪(XRF)、扫描电镜(SEM)和比表面积及孔径分析仅等技术对样品的组成和结构进行表征.考察了球粘土作为吸附剂,在不同投加量下吸附亚甲基蓝(MB)溶液的吸附性能,结果表明,球粘土吸附剂对MB的吸附过程符合准二级吸附动力学模型和Langmuir吸附等温式.  相似文献   

7.
吕雅鑫  王亚威  封严 《精细化工》2021,38(4):830-837
以麦糟(RSG)为基材,氯乙酸为醚化剂,NaOH为催化剂,制备了醚化改性麦糟(MSG),研究了MSG对亚甲基蓝(MB)的吸附性能.考察了改性条件对MB吸附效果的影响.结果表明,在固液比1:50(g:mL)、n(NaOH):n(ClCH2COOH)=1.25:1.0、醚化温度为75℃、醚化时间为2.5 h的条件下,制得的MSG对MB吸附效果最好,吸附量达到201.20 mg/g.采用SEM、N2吸附-脱附、FTIR、XPS和零电荷点技术对改性前后麦糟的外观形貌、比表面积和孔径分布、表面性质等进行了表征.Langmuir方程和拟二级动力学方程可很好地描述MSG吸附MB的过程,化学吸附为其主要吸附方式.  相似文献   

8.
杨敏  王丽娟  宋岩 《硅酸盐通报》2019,38(11):3445-344
同质多晶、双八面体和三八面体混杂和八面体阳离子同构置换等现象增加了凹凸棒石化学组成和晶体结构的复杂性和多样性.纤维状凹凸棒石具有高孔隙率,大的比表面积,以及表面上的活性位点和阳离子交换的性质,这些使得它们能够有效地吸附重金属污染物,近年来已广泛用于治理环境中的重金属污染.原生凹凸棒石对重金属吸附效果不够理想,因此凹凸棒石经常被改性以解离晶束,增大表面积和孔隙率,引入吸附活性基团以增加吸附活性.常规的改性方法有高温煅烧、酸化改性、碱化改性、和无机复合改性.相对于常规改性吸附剂,磁性材料复合、电吸附、毫米级多孔微球和三维网状过滤膜改性能够提高吸附剂的回收利用率,是未来凹凸棒石吸附剂的发展方向.  相似文献   

9.
以价廉易得的商业炭为原料,采用氢氧化钾为活化剂,制备出改性微孔活性炭。对其进行了表征分析,并将其用于吸附印染废水中的亚甲基蓝(MB)。结果表明,经活化改性后的活性炭孔径分布均匀,平均孔径为1.2 nm,比表面积高达2 380 m~2/g(比商业炭提高了58.7%)。改性活性炭对MB的吸附过程符合Redlich-Peterson等温吸附模型,其吸附机理符合Langmuir模型的可能性较大,吸附动力学特征符合准2级动力学方程,吸附速率主要受颗粒内活性位点吸附步骤控制。改性活性炭在在室温下对MB的最大吸附量可达305.0 mg/g。吸附过程是自发进行的,温度的升高有利于吸附过程的进行与吸附量的提高。  相似文献   

10.
以天然杉木木屑(RFS)和改性杉木木屑(MFS)为吸附剂,对亚甲基蓝(MB)的吸附性能进行考察,探讨了吸附剂投加量、溶液起始pH、MB初始含量、吸附时间及助剂等因素对吸附的影响。结果表明,改性能够提高杉木木屑对MB的吸附性能,当MB的质量浓度为100 mg/L时,RFS和MFS的优选投加量分别为4.0 g/L和2.0 g/L;溶液在pH为4~12的条件下,RFS和MFS对MB的吸附容量变化不大,说明这2种木屑对染液的酸碱波动具有较好的耐受力;RFS和MFS的吸附量随MB初始含量的升高而升高;NaCl、阴离子表面活性剂(SDBS)对吸附影响不大,而阳离子表面活性剂(CTAB)则会明显抑制MB的吸附;2种木屑对MB的吸附均符合准2级动力学模型,吸附等温模型拟合最符合Langmuir等温模型,RFS及MFS对MB的Langmuir吸附量分别为58.5、119mg/g。  相似文献   

11.
介绍了13?托贝莫来石在改性塑料、回收塑料、阻燃材料和薄膜中的应用。实验结果表明,该新型托贝莫来石对挥发性有机化合物气体的吸附性能强,可以降低材料的总挥发性有机化合物,并且在阻燃材料中具有阻燃增效的作用,在防雾滴膜中具有延长流滴失效时间的作用。  相似文献   

12.
采用聚氯化铝生产压滤残渣(PACR)为原料,改性得到水化氯铝酸钙吸附剂(M-PACR),考察该吸附剂对Cr(Ⅵ)的吸附效果。扫描电镜分析表明,M-PACR表面的孔隙结构较改性前更明显;比表面积分析数据显示,M-PACR的比表面积较PACR增大了近3倍。吸附实验效果表明,M-PACR吸附Cr(Ⅵ)的最佳pH为6。M-PACR对Cr(Ⅵ)的吸附符合二级吸附动力学模型与Langmuir吸附等温模型。  相似文献   

13.
孙烨  赵彬侠 《当代化工》2021,50(11):2558-2562,2567
拟采用内蒙古钙基蒙脱土为原料,以钛和硅为改性元素,采用离子交换法制备Ti-Si双元素改性蒙脱土吸附剂.借助X射线衍射、能量色散X射线光谱仪等分析手段,对吸附剂样品进行表征.结果表明:蒙脱土改性后结构显著改善,吸附剂的层间距扩撑到d(001)=1.9484 nm、总孔容增大1倍以上、比表面积增大到304.723 m2·g-1.用吸附等温方程和动力学方程对实验数据进行拟合分析,研究结果表明:Cr(Ⅵ)在改性蒙脱土吸附剂上的吸附状态为单层物理吸附,且颗粒内扩散并不是反应速率控制步骤.  相似文献   

14.
吴连永  张大琴  贾志刚  李敏  韩聪  昌锐 《精细化工》2023,(1):177-184+232
以甲醛化处理后的木焦油为前体,通过炭化-活化法制得了木焦油基活性炭(WAC)。利用FTIR、比表面积和孔结构分析仪、XPS、SEM以及XRD对WAC的结构进行了表征。以制备的WAC为吸附剂,考察了其对模拟废水中亚甲基蓝(MB)的吸附性能。结果表明,制备的多孔活性炭WAC比表面积可达1373 m2/g,表面含有丰富的含氧官能团。WAC对MB具有良好的吸附性能,准二级动力学模型能更准确地描述WAC吸附MB的过程。吸附等温线更符合Langmuir等温吸附模型。WAC对MB的最大吸附容量可达559mg/g。热力学分析表明,MB在WAC上的吸附是放热和自发的。  相似文献   

15.
本文评价了KMnO_4改性稻壳吸附剂的吸附性能。采用扫描电镜、比表面积分析仪和红外光谱仪对改性前后的稻壳吸附剂进行了表征,探究了稻壳吸附剂在不同条件下对亚甲基蓝的吸附能力,并进行了3个温度下的等温吸附实验。结果表明,KMnO_4改性稻壳吸附剂比表面积显著增加,是原始稻壳的10倍,表面性质也有明显变化,吸附能力几乎不受溶液pH值影响,改性稻壳对亚甲基蓝的吸附过程符合准二级动力学方程和Langmuir等温模型,最大吸附量可以达到50mg·g~(-1)以上。  相似文献   

16.
AgY吸附剂的吸附脱硫性能及竞争吸附研究   总被引:1,自引:0,他引:1  
以NaY分子筛为载体,通过液相离子交换法制备了Ag改性的AgY分子筛,并对其进行了X射线衍射(XRD).原子吸收光谱(AAS)、N2吸附比表面积(BET)、X射线光电子能谱(XPS)和扫描电镜(SEM)等表征分析.以噻吩/石油醚体系为模型化合物,考察了吸附温度、吸附时间等吸附条件对吸附剂吸附性能的影响,结果表明吸附温度...  相似文献   

17.
王智  卢涛  胡小华  韦迎春  钱觉时 《硅酸盐通报》2015,34(12):3425-3429
根据蒸压养护对固硫灰渣中水化过程和水化产物的影响研究,借助化学计算手段对加入So42-的托贝莫来石体系进行结构优化和能量计算,并探讨了蒸压石膏(硫酸盐)在CaO-SiO2-Al2O3-CaSO4-H2O五元体系中的存在形态及对五元体系性能的影响.结果表明:蒸压养护后,固硫灰渣中每个托贝莫来石晶胞可进入4个SO42-,晶胞参数发生变化,结构经过优化后达到稳定;SO42-进入晶胞前后的体系能量差AE=-1619.87 keal/mol,有利于托贝莫来石生成.试验结果为蒸压养护下石膏促使CSH(B)转换为托贝莫来石的研究提供了参考.  相似文献   

18.
以小麦秸秆纤维素(WSC)为原料,将功能性单体N-乙烯基吡咯烷酮(NVP)、丙烯酸(AA),通过接枝共聚反应,对小麦秸秆纤维素进行改性,制备了天然高分子基吸附剂小麦秸秆纤维素接枝丙烯酸共聚物(WSC-PNAA),并采用红外光谱仪(FT-IR)、扫描电子显微镜(SEM)、热重分析仪(TG)对制备的高分子吸附剂进行了表征;研究了其对染料亚甲基蓝(MB)的吸附性能,考察了对其吸附性能的影响因素及等温吸附行为和吸附动力学。结果表明,室温下,MB初始质量浓度为100 mg/L、吸附剂用量为50 mg、吸附时间10 min时,WSC-PNAA对含MB模拟废水原液的脱色率达到99.5%。  相似文献   

19.
陆艳  刘钦  罗中秋  周新涛  赵晓腾  兰雄 《硅酸盐通报》2022,41(12):4378-4388
以镍铁渣为原料,加入硝酸和表面活性剂对其矿物相改性,制备改性镍铁渣吸附剂,考察表面活性剂种类、十六烷基三甲基溴化铵(CTAB)掺量、吸附剂掺量、溶液初始pH值、Cr(VI)浓度对Cr(VI)吸附效果的影响。结果表明:镍铁渣经改性后可制得结构疏松、比表面积高达180.6 m2/g的无定形SiO2;改性镍铁渣对Cr(VI)的吸附率在10 min内可达到90%,吸附等温线符合Langmuir模型,最大理论吸附容量为42.55 mg/g,吸附动力学符合拟二级动力学模型。改性镍铁渣吸附剂对Cr(VI)的吸附机理主要是物理吸附和氧化还原,即吸附剂表面范德华力将HCrO -4吸附至吸附剂表面,CTAB提供的电子对将Cr(VI)还原为Cr(III)。对镍铁渣改性获得的高比表面积无定形SiO2不仅可以有效吸附净化Cr(VI),同时可以实现镍铁渣资源化利用,达到以废治污的目的,具有良好的环境效应和经济效益。  相似文献   

20.
利用微米尺度、无定形二氧化硅与氧化钙制备层间距d(002)为1.13 nm的托贝莫来石,研究了托贝莫来石高温煅烧过程中的结构变化和在725℃时的微结构变化规律。结果表明:725℃煅烧2 h后,部分托贝莫来石形成类单斜链状的硅灰石结构(结晶态)和脱羟基托贝莫来石(无定形态);这种无定型的亚稳状态结构的外貌和托贝莫来石的晶体外貌相似,都是针状、片状的晶体,和大量由片状与针状堆积形成的颗粒状结构;在725℃煅烧温度下,部分微米、亚微米尺度的托贝莫来石转变为单斜链状的硅灰石结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号