首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
耐高温高强韧性连续碳纤维增韧碳化硅复合材料(C/SiC)是空天飞行器用热结构件的首选材料之一。C/SiC热结构件的结构复杂,其连接技术是推动该材料应用的关键。采用化学气相渗透工艺制备2D C/SiC单钉铆接单元,研究其微结构和拉伸行为,分析相应的失效机制。结果表明:2D C/SiC单钉铆接单元的显微结构具有多孔、非均匀粘接和非均匀钉孔间隙特征。铆接剪切强度平均值为157.77 MPa,超过2D C/SiC面内剪切强度。搭接界面脱粘、钉孔相互挤压和铆钉内纤维剪断是2D C/SiC单钉铆接单元的主要失效机制。孔周损伤呈现3种典型形貌,分别为孔周形貌完好、基体压溃和钉孔界面脱粘。  相似文献   

2.
基体改性对碳纤维增韧碳化硅复合材料结构与性能的影响   总被引:2,自引:0,他引:2  
采用化学气相浸渗法对2D C/SiC复合材料进行基体改性,制备了二维碳纤维增韧碳-碳化硅二元基复合材料(two dimensional carbon fiber reinforced C-SiC binary matrix composites,2D C/C-SiC).2D C/C-SiC复合材料的基体为热解碳和碳化硅交替叠层的多层基体.研究了2D C/C-SiC复合材料的微观结构,比较了2DC/SiC复合材料和2DC/C-SiC复合材料的力学性能及断口形貌.结果表明:2DC/C-SiC复合材料可在基本保持2DC/SiC复合材料抗弯强度的基础上,其断裂韧性得到显著提高.基体改性的效果明显.纤维的逐级拔出是断裂韧性提高的原因.  相似文献   

3.
连续纤维增韧碳化硅陶瓷基复合材料研究   总被引:27,自引:6,他引:27  
采用化学气相浸渗法制造了连续碳纤维和碳化硅纤维增韧碳化硅陶瓷基复合材料,并对复合材料的显微结构和力学性能进行了研究,C/SiC/SiC复合材料的密度分别为2.1g/cm^3和2.5g/cm63,在断理解过程中表现出明显的非线性和非灾难性的断裂行为和规律,C/SiC和SiC/SiC弯曲强度分别为450MPa和850MPa,从室温至1600℃强度不发生降低;断裂韧性为20MPa.m^1/2和41.5MPa.m^1/2,断裂功为10kJ.m^-2和28.1kJ.m^-2,冲击韧性为62.0kJ.m^-2和36.0kJ.m^-2,C/SiC和SiC/SiC复合材料具有优异的抗热震性能,经1300℃→←3000℃,50次热震后,强度保持率高达96.4%,热震不是材料性能损伤的控制因素,而SiC/SiC复合材料优异的抗氧化性能,对温度梯度不敏感,得合材料喷管在液体火箭发动机上成功地通过了地面实验。  相似文献   

4.
本文以2D SiC/SiC、2.5D C/SiC与SiC/SiC拉伸试样为研究对象,通过试验方法对比了数字图像相关(DIC)、引伸计、应变片三种应变测量方式的测量结果,得出更准确可靠的应变测量方法;通过对比单调拉伸与循环加-卸载两种载荷形式下的试验结果,结合声发射信号,分析了不同载荷形式对测试结果的影响;针对PIP制备工艺,研究了同一构型对C/SiC与SiC/SiC两种材料的适用性。  相似文献   

5.
采用精炼钢包对两种含不同粒度SiC的Mg O-Al_2O_3-C(MAC)材料在包壁部位进行了115~135炉的工业试验,发现SiC粒度显著影响MAC材料的侵蚀速率,采用平均粒径D50=24.58μm的SiC粉的MAC材料的侵蚀速率为1.05 mm/炉(135炉),采用平均粒径D50=4.34μm的SiC粉的MAC材料侵蚀速率为1.30 mm/炉(115炉)。对用后MAC材料的损毁机理研究表明:2种材料中SiC都与CO(g)反应生成SiO(g),一部分SiO(g)继续与CO(g)反应生成SiO_2(s)和C(s),利用体积膨胀促进了材料结构致密化,大幅提高了抗氧化性能;而另一部分SiO(g)直接溢出MAC材料。当SiC粒度较大时,SiC与CO(g)反应较慢,减少了SiO(g)直接溢出,生成更多SiO_2(s),使得组织结构更致密,抑制了MAC材料中C的氧化,材料组成与结构保持更加完好,强度较高,具有更高的抗钢水冲刷磨损能力;SiC粒度大,在提高材料抗氧化能力的同时,也减少了材料与熔渣的接触面积,降低了MgO向熔渣的溶解速率。故在精炼钢包环境中,平均粒径D50=24.58μm的SiC比D50=4.34μm的SiC更利于提高MAC材料的抗侵蚀能力。  相似文献   

6.
最近发展起来的SiC纤维复合涂层,也就是SiC/SiC层与化学气相沉积(CVD)SiC结合形成复合涂层,已能够在高温下提高C/C复合材料的抗氧化性。形成的SiC纤维复合涂层约300μm厚,生产时先将SiC毡覆盖在3D-C/C基体材料上,然后浸渍一种碳粉与硅粉均匀分散的料浆进行化学气要沉积。通过化学气相沉积(CVD)过程,在复合材料上形成致密的涂层。在CO2-H2O-N2组成的混合气体(CO2 9%、N273%、H2O18%),1700℃下进行5h氧化实验,结果发现有SiC毡增强复合涂层比没有SiC毡增强复合材料失重率低。SiC纤维毡复合涂层由双层结构组成,里层是多气孔的SiC/SiC纤维层,外层为致密的SiC涂层。由于SiC/SiC纤维层热膨胀系数介于C/C复合基体材料与CVD-SiC涂层之间,因此,SiC/SiC中间层在复合材料中起了重要作用,从而由于热膨胀系数不同产生的热应力致使涂层开裂降低到最低程度。涂层试样氧化后,采用缓冲冲床(MSP)测试其残余强度。MSP测试结果表明氧化后C/C复合材料强度值呈发散性,从纤维折断面看有z轴方向分布纤维存在。然而,这种方法仅适用于测试小尺寸试样。从这篇论文中,可看出涂层后的C/C复合材料有高的抗氧化性,其氧化后仍能保持高的残余强度。  相似文献   

7.
铆钉孔径双剪切单剪切尸:鳍一个钉距内的车瞥之20落5之O铆接强度一般是以铆钉排列的一个钉距内的强度来表示的。因此,若以表示一个钉距内的铆钉数,则搭接铆接强度可用下式表示:.........……(1) T少兀一4月=n只=(P一d)t·cr······……(2)对接铆接强度可用下式表示:尸=2。.票dZ了........……(3) 任 只二(P一d)t·cr·····,……(4) 取二者中的较小值作为强度(舍弃大值)。式中,d为铆钉孔径(厘米),尸为钉距(厘米),”为一个钉距内的铆钉数(在图A中取1,在B中取2,在D中取l,在E中取2,在F中取3,在H中取5),T为单剪时的抗剪强度,丫为双…  相似文献   

8.
考察了纳米SiC -Al2 O3/TiC多相陶瓷复合材料的断裂方式 .由于纳米SiC的加入 ,材料以穿晶断裂为主 .通过透射电镜观察 ,研究了纳米陶瓷复合材料中纳米SiC的分布 ,证明所制备的材料主要为晶内型纳米复合陶瓷 .在纳米SiC -Al2 O3/TiC多相陶瓷复合材料中 ,少量纳米SiC位于基体晶粒间 ,大多数纳米SiC位于基体晶粒内 ,而且纳米SiC的加入细化了基体的晶粒 .通过高分辨透射电镜观察 ,研究了纳米SiC -Al2 O3/TiC多相陶瓷复合材料中 ,纳米SiC与基体间界面结合状态 ,发现在两颗粒间的晶界几乎没有玻璃相 ,证明纳米陶瓷复合材料中晶界得到了加强 ,有利于材料力学性能的提高 .另外研究了裂纹在材料中的扩展行为 ,结果表明 ,纳米粒子对裂纹的扩展起到偏折和钉扎作用  相似文献   

9.
分别采用热膨胀仪和激光脉冲热导仪测量了2维、2.5维和3维纤维编织结构的碳纤维增强碳化硅(carbon fiber reinforced silicon carbide,C/SiC)复合材料从室温到1 400℃温度范围内纵向和横向热膨胀系数,以及厚度方向的热扩散系数.用扫描电镜、光学显微镜观察了样品的微结构.结果表明:低温段(700℃以下),3种C/SiC的纵向和横向热膨胀系数均随温度的升高而缓慢增大,并在700℃之后出现不同程度的波动;高温段(700℃以上),它们的纵向热膨胀系数和2维C/SiC的横向热膨胀系数随温度的升高而减小,而2.5维和3维C/SiC的横向热膨胀系数则随着温度的升高而迅速增大.三者厚度方向的热扩散系数均随温度的升高而减小,3维C/SiC的热扩散系数最大,分别是2.5维C/SiC和2维C/SiC的1~1.2和1.4~2倍.  相似文献   

10.
为了进一步了解Ti3SiC2/nSiC复合材料优良的综合性能,特别是其高温力学性能,本文以热等静压原位合成技术制备的Ti3SiC2/4SiC复相陶瓷为试验材料,对其高温拉伸和高温弯曲行为进行研究。结果表明:Ti3SiC2/4SiC复相陶瓷的高温抗拉强度比室温抗拉强度高;Ti3SiC2/4SiC复相陶瓷的高温抗弯强度在900℃出现一极大值,1000℃后具有好的高温塑性。  相似文献   

11.
纤维复合材料在我国航天、航空及军工、民用领域已经得到了非常广泛的应用,已成为航空、航天及军工生产中的重要结构材料之一。卫星上很多结构件均采用复合材料制成,即提高了结构件强度,还大大减轻了重量。纤维材料结构件产品之间的连接大量应用了铝及铝合金铆钉铆接工艺。由于纤维复合材料本身的特殊性,采用铆接工艺连接与铆接金属零件有很多区别。如果单纯采用铆接金属零件形式铆接纤维复合材料产品会大大影响产品的连接强度和质量。我们经过多年的实践和分析,总结出一套有效实用的工艺方法,很好的解决了纤维复合材料产品的铆接问题,提高了生产效率和铆接质量,在生产中产生了非常好的效果。  相似文献   

12.
航天飞行器热防护系统技术综述   总被引:2,自引:0,他引:2  
综述表明,C/C和C/SiC复合材料是宇宙输送系统飞行器前端部位热防护系统的最佳材料选择,多层抗氧化涂层、超高温陶瓷(UHTC)涂层、UHTC基体改性是提高其高温长期使用的有效途径。指出多层UHTC涂层、纳米级UHTC颗粒、火花等离子浇结(SPS)及碳气凝胶填充碳泡沫新型热防护结构等在高温热防护材料方面已显现出实际应用方向。  相似文献   

13.
王毅强  张立同  成来飞  马军强 《硅酸盐学报》2008,36(8):1062-1068,1078
采用化学气相渗透法制备了2维和2.5维碳纤维增强碳化硅(carbon-fiber-reinforced silicon carbide,C/SiC)复合材料,沿经纱(纵向)和纬纱(横向) 2个方向对2种复合材料进行了室温拉伸性能测试,并从预制体结构和原始缺陷分布的角度对比分析了两者力学性能之间的差异.结果表明:两种C/SiC复合材料均表现出明显的非线性力学行为,在经纱方向和纬纱方向上,2维C/SiC复合材料力学性能表现为各向同性,而2.5维C/SiC复合材料力学性能则表现出明显的各向异性:经纱方向上2.5维C/SiC复合材料的拉伸强度和拉伸模量(326 MPa,153 GPa)均高于2维C/SiC复合材料的(245 MPa,96 GPa),纬纱方向上的(145 MPa,62 GPa)均低于2维C/SiC复合材料的(239 MPa,90 GPa).两种复合材料的拉伸断裂行为均表现为典型的韧性断裂,并伴有大量的纤维拔出.两种复合材料中纱线断裂均呈现出多级台阶式断裂方式,但其断裂位置并不相同.2.5维C/SiC复合材料中由于经纱路径近似于正弦波,弯曲程度较大,在纱线交叉点处造成明显的应力集中,因此经纱多在纱线交叉点处断裂;而纬纱由于其路径近乎直线,应力集中现象不明显,因此纬纱断裂位置呈随机分布.2维C/SiC复合材料中经纱和纬纱由于其路径类似于2.5维C/SiC复合材料中的经纱,因此其断裂位置也多在纱线交叉点处.微观结构观察表明不同的编织结构是造成两种复合材料在不同方向上力学性能差异的主要原因.  相似文献   

14.
针对化学气相渗透法制备的C/SiC复合材料燃烧室,采用发动机燃烧风洞,研究了其在超高温燃气环境下的氧化烧蚀行为,分析了C/SiC复合材料燃烧室内各个区域的烧蚀形貌特征。结果表明:SiC在不同区域表现出不同的烧蚀行为,包括主被动氧化、层流冲刷、湍流冲刷等,这些烧蚀及其耦合作用使得SiC基体被侵蚀以及碳纤维被氧化,最终导致C/SiC复合材料在燃烧时失效。C/SiC复合材料是一种重要的超高温热防护材料,了解在服役环境下这种材料的失效机理是其应用和优化的基础。  相似文献   

15.
针对化学气相渗透法制备的C/SiC复合材料燃烧室,采用发动机燃烧风洞,研究了其在超高温燃气环境下的氧化烧蚀行为,分析了C/SiC复合材料燃烧室内各个区域的烧蚀形貌特征。结果表明:SiC在不同区域表现出不同的烧蚀行为,包括主被动氧化、层流冲刷、湍流冲刷等,这些烧蚀及其耦合作用使得SiC基体被侵蚀以及碳纤维被氧化,最终导致C/SiC复合材料在燃烧时失效。C/SiC复合材料是一种重要的超高温热防护材料,了解在服役环境下这种材料的失效机理是其应用和优化的基础。  相似文献   

16.
研究了SiAlON(主要为Si_4Al_2O_2N_6)结合SiC、复相氮化物(Si_2N_2O/Si_3N_4)结合Si C和β-SiC结合Si C材料在1 000℃、CO气氛(C+CO_2=2CO)中分别侵蚀100、200、300和400 h后其质量、显气孔率、常温耐压强度以及物相组成和显微结构的变化。结果表明:1)复相氮化物结合Si C材料抗CO侵蚀性最好,CO侵蚀后其常温耐压强度大幅度增大,达到363 MPa; SiAlON结合SiC的次之,为200 MPa;β-SiC结合SiC的最差,为136MPa。2)复相氮化物结合SiC材料被CO侵蚀后,其致密度增大较多; SiAlON结合SiC材料被CO侵蚀后,SiAlON发生Al2O_3脱溶,有新生针状产物;β-SiC结合SiC材料被CO侵蚀后,生成了少量方石英或石英。  相似文献   

17.
对平纹编织C/SiC复合材料样品拉伸破坏过程的声发射进行监测,采用基于改进遗传算法的无监督聚类方法对声发射信号进行模式识别,统计分析各类声发射模式的特征及其演化过程,结合断口分析,研究了C/SiC复合材料的拉伸强度、损伤机制与声发射信号演化之间的关系.结果表明:维断裂的声发射能量能够反映纤维/基体界面结合强度;低强度C/SiC材料中存在引起应力集中的基体富集区,在加载初期基体开裂事件占比超过50%;中强度C/SiC材料由于较强的界面,纤维损伤以单丝或部分纤维断裂事件为主;高强度C/SiC材料界面结合强度适中,纤维簇断裂是主要的失效模式.  相似文献   

18.
Ti3SiC2陶瓷的制备   总被引:4,自引:2,他引:2  
Ti3SiC2陶瓷由于具有非常优越的性能而受到广泛关注,但到目前对于反应合成Ti3SiC2的热力学和动力学仍缺乏系统地研究.本文对反应合成Ti3SiC2进行了热力学计算和动力学分析,利用Ti、Si、C混合粉末进行热压,制备了较高纯度的Ti3SiC2陶瓷,并对烧结试样进行XRD和断口SEM分析.热力学计算结果表明:在常用的反应合成Ti3SiC2的材料体系中,Ti-Si-C三元粉末的反应热力学驱动力最大,据此选择Ti、Si、C粉末,按照3:1.2:2的原子比混合作为反应合成Ti3SiC2的原料;动力学分析结果表明:Ti-Si-C三元元素粉末的反应动力学要求必须有较高的升温速度,才能获得Ti3SiC2材料.根据动力学分析结果设计反应合成工艺,利用真空热压获得了纯度达到89%(体积分数,下同)以上的Ti3SiC2材料.  相似文献   

19.
以Ti,Si和C粉为主要原料,利用高能球磨及热压烧结制备了SiC/Ti3SiC2复相陶瓷。研究了工艺条件尤其是烧结温度和压力对合成产物相组成、微观结构及性能的影响,并结合X射线衍射、扫描电镜等检测结果探讨了Ti-Si-C体系反应合成机理。结果表明:通过高能球磨18h,在25MP和1300oC热压,可得到均匀、致密的SiC/Ti3SiC2复相陶瓷材料。Si含量对SiC/Ti3SiC2材料的相组成及性能有较大影响。起始原料中的Ti,Si,C和Al的质量比为3:1.2:2:0.2时,材料性能提高明显,其弯曲强度、断裂韧性、密度和相对密度分别为526.65MPa,8.67MPa·m1/2,4.058g/cm3,89.78%。显微结构的观察表明,SiC/Ti3SiC2复合材料的断裂具有沿晶和穿晶混合断裂特征。SiC颗粒增韧抑制了微裂纹在Ti3SiC基体中的扩展。  相似文献   

20.
《炭素》2018,(3)
采用无涂层、SiC涂层、C和SiC复合涂层处理的炭布/网胎预制体,经过CVD和树脂浸渍/炭化混合致密,制备了4种C/C坯体,随后熔融渗硅获得C/SiC复合材料;研究了不同纤维涂层、基体炭类型对C/SiC复合材料弯曲强度和断裂方式的影响,并对复合涂层状态的C/SiC材料的摩擦磨损性能进行测试。结果表明:混合基体炭与纯热解炭的C/C坯体相比,制备的RMI-C/SiC材料弯曲强度更高,且经过涂层处理的C/SiC材料弯曲强度最高;复合涂层、混合基体炭均使材料表现出良好的"假塑性"。复合涂层处理的试样在制动压力0.6~0.8 MPa、惯量0.3~0.4 kg·m~2、转速为6000~7500 r/min的条件下,平均摩擦系数为0.348~0.454,且材料磨损量较小,最大为2.188μm/(面·次)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号