首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了实现我国白云鄂博地区含钛铌铁精矿资源的高效利用,以含钛铌铁精矿为原料,采用预还原-熔分的加热制度,研究熔分温度、熔分时间和碱度对含钛铌铁精矿含碳球团熔分行为以及渣系性质的影响.进一步采用X射线衍射、扫描电子显微镜等手段表征含碳球团在熔分过程中的微观结构及物相变化.实验结果表明:金属化率86.31 %的预还原含钛铌铁精矿含碳球团在1 400 ℃下熔分12 min后可实现渣铁有效分离,获得珠铁和富铌渣.随碱度升高,渣的熔点升高,渣的流动性指数降低,碱度为1.0时,球团的熔分效果较优;随熔分时间增加,含钛铌铁精矿含碳球团中的Ca2Ti2O6相减少,Ca(Ti0.4Fe0.3Nb0.3)O3相增加,钙钛铌共生物的尺寸增加,呈十字树枝状.   相似文献   

2.
为了研究钒钛铁精矿非自然碱度含碳球团高温固态还原规律,以钒钛铁精矿为原料,在实验室条件下,探索了还原温度、还原时间、碱度和配煤比对钒钛铁精矿非自然碱度含碳球团高温固态还原的影响,采用X射线衍射仪测定了金属化球团的物相组成。研究结果表明,适当提高还原温度、延长还原时间、提高碱度和配煤比均可促使球团的金属化率提高;对于钒钛铁精矿金属化球团物相组成,在还原温度高于1 400℃时,金属化球团中出现大量碳氮化钛,碱度的提高有利于抑制还原产物中碳氮化钛的生成,配煤比的增加促进了碳氮化钛的生成。从后续熔分工序对钒钛铁精矿金属化球团质量要求的角度来说,高温固态还原的适宜条件,还原温度为1 350℃,碱度为1.0,还原时间为30 min,配煤比为1.3,在此条件下,球团的金属化率为93.72%,金属化球团碳质量分数为6.08%,主要物相为黑钛石和金属铁。  相似文献   

3.
《铁合金》2017,(12)
试验以澳洲铁精矿为原料,对该矿进行XRD、SEM分析。采用含碳球团高温还原渣铁分离方法,考察配碳量和碱度两个因素对金属回收率的影响,结果表明:在含碳球团高温还原熔分试验中,还原温度和时间不构成限制环节条件下,金属回收率与最终熔分的渣熔点有很大关系,过量和不足均不利于金属回收。最终试验得出,在C/O=1.0,碱度为0.5条件下最有利于含碳球团的高温还原熔分,金属回收率达到97.36%。  相似文献   

4.
通过高温电阻炉对含碳球团还原熔分的行为进行热态模拟研究,考察焙烧温度、焙烧时间、配碳量(按照C/O计算)和炉渣碱度对含碳球团还原熔分的影响。实验结果表明:渣铁分离的最低熔分温度是1 360℃,最短焙烧时间是24.5 min,最低配碳量是1.0,最佳炉渣二元碱度R为1.2。  相似文献   

5.
包头含铌铁精矿选择性还原试验   总被引:2,自引:0,他引:2  
 采用兰炭为还原剂,利用罐式选择性还原的方法处理铌铁精矿,研究不同还原条件时金属化率的变化规律,利用扫描电镜观察铌的赋存形式,利用电炉熔分脱铁的方法处理还原后的铌铁精矿,考察铌氧化物的富集程度。研究结果表明,当温度为940~970 ℃时,还原2.5 h时铌铁精矿中铁氧化物金属化率可达85%以上,在还原过程中,铌氧化物不被还原成金属铌;铌主要以含钛、铁硅酸盐形式存在于还原后团块中;熔分获得金属铁和富铌渣,富铌渣中铌氧化物是原矿的1.55倍。  相似文献   

6.
 钒钛铁精矿是一种铁、钒、钛等多元素共生的复合矿,具有很高的综合利用价值。通过采用实验室转底炉对钒钛铁精矿内配碳球团进行了高温快速还原的可行性研究,分别考察了配碳比、还原温度、添加剂、还原时间等参数对球团金属化率的影响。结果表明,配碳比(1.5:1)、还原温度(1350℃)、添加剂(2%)、还原时间(20min)时金属化率可以达到88%以上。对原料、还原样品进行x射线衍射分析表明,钒钛铁精矿粉中的磁铁矿、钛磁铁矿和钛铁矿通过还原转变为单质铁、含铁黑钛石。  相似文献   

7.
以铝锰合金为还原剂对高钛富铌渣进行热还原,在1 500℃、配料碱度1.0、保温时间3~4min的条件下,获得了铌品位大于15%、铌收率大于86%、铌磷比大于100的铌铁合金。采用铝锰还原高钛富铌渣生产铌铁合金在技术上是可行的。  相似文献   

8.
徐掌印  李保卫  赵增武 《钢铁》2019,54(3):42-46
 为了研究铌在铁水吹氧冶炼过程中的氧化规律,在中频炉内进行了加入碱度分别为0.538和1.5的CaO-SiO2-Al2O3系造渣剂和不加渣的含铌铁水底吹氧气的冶炼试验。铁水温度为1 550 ℃时,研究了含铌铁水中硅、碳和铌的氧化规律,并利用FactSage软件进行了不同温度与不同碱度的造渣剂和无渣氧化铁水中各元素的热力学平衡计算。结果表明,高温吹炼使铁水中的碳优先于铁水中的硅氧化,而低温吹炼则促进铁水中硅优先于碳氧化;降低造渣剂碱度促进铁水中碳氧化、抑制硅氧化,碳和硅的氧化转化温度为1 490 ℃;在吹氧冶炼终点,加入碱度为1.5的造渣剂,铁水中硅质量分数下降到0.138%时,铌开始氧化减少,而加入碱度为0.538的造渣剂,铁水中碳质量分数下降到0.61%,硅质量分数升高到0.56%,铌质量分数不变,因此含铌铁水可通过加入低碱度造渣剂高温吹氧冶炼为含铌钢水。  相似文献   

9.
目前铌资源的研究大多处于常规加热阶段,因为能耗高、冷中心等问题无法广泛推广。微波加热技术是一种新型加热技术,可以有效避免冷中心等问题。借助微波马弗炉将铌精矿碳热还原反应与微波加热相结合,探究还原温度、配碳比及保温时间对铌精矿金属化率的影响,以及金属颗粒的成长行为。研究结果表明,微波加热在碳热还原反应中优于常规加热,在微波加热下,还原温度为1100℃、保温30 min、配碳比为1时,金属化率达到94.84%;1000℃时NbC开始生成,1100℃时铌钛产物主要为(Ti,Nb)C,1300℃时,钛的产物主要以TiC形式存在。  相似文献   

10.
吴恩辉  李军  徐众  侯静  黄平 《钢铁》2023,(2):30-38
高铬型钒钛铁精矿煤基直接还原-电炉熔分新工艺是实现铁、钒、钛和铬元素综合利用最有前景的非高炉冶炼工艺之一,而金属化球团的物化性能与后续电炉熔分工艺能否顺行密切相关。采用煤基直接还原工艺,研究了还原温度、还原时间、煤矿质量比和二元碱度对高铬型钒钛铁精矿金属化球团的物相组成、金属化率、残碳量、电阻率和抗压强度等物化性能的影响规律。试验结果表明,提高还原温度和延长还原时间均有利于磁铁矿和钛铁矿分别被还原为金属铁和黑钛石,而较高的煤矿质量比和二元碱度对还原过程不利;金属化球团电阻率的大小依赖于金属化球团的物相组成、不同物相组成的含量及各个物相之间的结合形式;金属化球团的金属化率与电阻率呈现较为明显的负相关,但是随着金属化率的提高,负相关的程度有所降低;在金属化率大于90%时,电阻率均小于0.5Ω/cm;金属铁的生成量和金属铁晶粒之间的连接作用是影响金属化球团抗压强度的关键因素,提高还原温度和延长还原时间有助于金属化球团抗压强度的提高,而随着煤矿质量比和二元碱度的提高,金属化球团的抗压强度降低。在还原温度为1 300℃、还原时间为35 min、煤矿质量比为25∶100、二元碱度为0.13的条件下...  相似文献   

11.
含铌尾矿的直接还原研究   总被引:1,自引:0,他引:1  
为开发一种新的铌铁冶炼工艺,实现综合利用国内包头白云鄂博特殊矿的铁-铌-稀土资源,进行了含铌尾矿冶炼新工艺的基础性研究。由热力学分析可知,标准状态下,C直接还原NbO的温度(1 489℃)比还原FeO的温度(705℃)高得多,所以可以通过罐式法直接还原含铌尾矿,先还原铁,分离铁与铌氧化物,使铌富集在渣中,达到铌铁分离的目的,然后再还原铌氧化物。并在此基础上,将含铌尾矿的还原效果与铁精矿的进行对比与分析,确定最佳的还原工艺和操作参数。综合各种因素,通过对3种不同装料方式罐式法还原试验的比较分析,认为最适合的还原工艺参数为:950℃饼状罐式法还原,还原时间4 h。  相似文献   

12.
对Fe-Ti-N-C-O系热力学计算和分析表明,钒钛铁精矿盐酸浸出渣采用碳热还原工艺制备TiCN在热力学上是可行的。通过XRD对还原产物进行物相分析和计算,探索了配碳量、还原温度和还原时间对还原过程和还原产物中TiC_(1-x)N_x的C/N的影响,试验结果表明:随着还原温度的升高、还原时间的延长和配碳量的增加,还原产物中TiC_(1-x)N_x的C/N值有下降趋势。在配碳量为1.6,还原温度1500℃,还原时间30,min时,还原产物TiC_(1-x)N_x的x值为0.775,C/N=0.29。  相似文献   

13.
 含铌铁水通过脱碳保铌探索作为合金化元素回收铁水中铌并直接冶炼为含铌微合金钢的方法。试验在真空碳管炉内进行,铁水温度为1 500 ℃,氧化剂为Fe2O3,真空度为10 Pa,分别进行有SiO2-CaO-Al2O3系造渣剂、无渣真空氧化冶炼研究。结果表明:在无渣条件下,加入Fe2O3铁水中硅、铌和碳同时氧化,不能脱碳保铌;加入造渣剂时,造渣剂的碱度越低,铁水中的硅氧化量越低,碳氧化量越高,碳质量分数最低下降到0.032%,铌质量分数最低值从0.09%下降到0.082%;碱度越高,铁水中硅氧化量越高,铌的氧化量也越高;真空氧化冶炼能够促进碳氧化,减少硅的氧化,抑止铌氧化。在50 kg级真空感应电炉内成功进行了回收铁水中铌直接冶炼为含铌钢试验,为回收含铌铁水中的铌提供新方法,也为工业化直接冶炼含铌钢提供试验依据。  相似文献   

14.
以钒钛铁精矿和煤粉为原料,在空气气氛下通过碳热还原法制备Fe-Ti(C,N)复合粉末。通过还原产物X射线衍射分析,对空气气氛下还原温度和配碳量对钒钛铁精矿碳热还原的反应过程以及物相演变进行了研究。结果表明,随着温度的升高,反应过程中的物相演变过程为:Fe_3O_4→Fe,Fe TiO_3→Fe Ti_2O_5→Ti_4O_7→Ti_2O_3→Ti(C,N),配碳量是使反应体系处于气相平衡的关键因素。在配碳量25%时,体系内CO、CO_2和N2的分压不能达到平衡或维持反应平衡的时间很短,钒钛铁精矿不能被还原或只能部分被还原为Ti(C,N)。在还原温度1 500℃,还原时间30 min,配碳量30%的条件下,还原产物中Ti C_(1-x)N_x的颗粒尺寸约为3μm,Ti C_(1-x)N_x的C/N值为0.491 5,x=0.67。  相似文献   

15.
对含钛炉渣碳热还原过程进行了详细的热力学计算分析,结果如下:含钛炉渣碳热还原过程中Ti O_2被还原成一系列钛的低价氧化物,TiO_2转变为Ti_3O_5的开始温度为1 359 K,之后可能形成Ti_2O_3和TiC_xO_y,最终形成TiC;含钛炉渣中CaO、MgO和Al_2O_3不与C发生反应;Fe_2O_3、V_2O_5、Mn O和SiO_2可以被C还原,且还原难度依次增加;早期形成的TiC可能与TiO_2发生反应,形成Ti_3O_5等低价化合物;含钛炉渣中CaTiO_3不直接与C发生反应,CaTiO_3熔融后被C还原为TiC。热力学计算为分析含钛炉渣中各种矿物在碳热还原过程中的转变过程提供了重要依据。  相似文献   

16.
为研究高碱度电炉粉尘碳热还原反应动力学和反应机制。通过不同温度条件下含碳高碱度电炉粉尘的物相(XRD)解析其物相转变过程。采用热重分析法对不同配碳量和碱度的高碱度电炉粉尘进行热重实验,实验结果表明,配碳量和碱度能促进电炉粉尘碳热还原反应,提高碱度能降低反应所需的温度。最后,通过非等温动力学分析法对高碱度电炉粉尘进行动力学分析,基于KAS法和Coats-Redfern法,确定了主要的动力学参数,根据转化率(α)高碱度电炉粉尘碳热还原过程分为3个阶段:α=0~0.082,α=0.082~0.5和α=0.5~1.0。第1阶段,平均活化能为380.68 kJ/mol,反应由一维扩散控制。第2阶段和第3阶段的平均活化能分别为318.79 kJ/mol和264.42 kJ/mol,其反应均由化学反应控制。  相似文献   

17.
以钛精矿和石墨为原料,在氮气气氛下通过碳热还原法制备出碳氮化钛(Ti CN)粉体。结合XRD、SEM、化学成分分析和TG-DSG综合热分析研究了配碳量及反应温度对钛精矿碳热还原进程的影响。研究结果表明,配碳量的增加影响逐级还原反应温度以及反应总失重,当配碳量达到23%时碳氮化钛产物中出现游离碳。钛精矿碳热还原过程中铁氧化物优先还原,钛氧化物经逐级还原形成Ti CN,还原顺序为Ti O2→Ti4O7→Ti3O5→Ti N→Ti(C,N,O)→Ti CN。得到的碳氮化钛粉体呈微米级不规则形状。  相似文献   

18.
利用还原焙烧技术将内蒙古某混合稀土精矿中铁矿物还原为金属单质,经过磁选分离实现了铁与稀土、铌等元素的高效分离及富集。通过单因素实验考察了还原温度、焙烧时间、配碳量条件对还原焙烧效果的影响,以及不同焙烧温度下稀土和铌富集、回收的情况。在焙烧温度1 175℃,焙烧时间90 min,配碳量C/O为1.5的优化条件下,铁金属化率达到92.52%,磁性物中铁品位为89.71%,铁回收率为92.12%,而非磁性物中铌品位及回收率为3.85%和87.92%;稀土品位及回收率达到7.15%和88.23%。  相似文献   

19.
对Fe-Ti-N-C-O系热力学计算和分析表明,钒钛铁精矿盐酸浸出渣采用碳热还原工艺制备TiCN在热力学上是可行的。通过XRD对还原产物进行物相分析和计算,探索了配碳量、还原温度和还原时间对还原过程和还原产物TiC_(1-x)N_x碳氮比的影响,实验结果表明:随着还原温度的升高、还原时间的延长和配碳量的增加,还原产物TiC_(1-x)N_x碳氮比有下降的趋势。在配碳量为1.6、还原温度1 500℃、还原时间30 min时,还原产物TiC_(1-x)N_x的x值为0.775,C/N=0.29。  相似文献   

20.
通过对以铁精粉、煤粉、石灰石及少量添加剂为主要原料的含碳球团进行还原试验,研究了碱度( CaO/SiO2)、反应时间、加热温度、添加剂及配碳比(C/O)等不同因素对于含碳球团还原熔分及珠铁中硫含量的影响,并分析了硫元素的分配情况.试验及分析结果表明:碱度、配碳比和反应时间对于珠铁中硫含量的影响较大,而对于碱度较高的含碳...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号