首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用共沉淀方法并结合热处理技术制备了CoNi O_(2)/Ti_(3)C_(2)Tx复合材料。使用扫描电子显微镜、X射线衍射、X射线光电子能谱、氮气吸脱附测试、循环伏安法、恒流充放电法和电化学阻抗测试对所制备样品进行表征。结果表明:CoNiO_(2)/Ti_(3)C_(2)Tx质量比为30:1的复合材料具有最佳的电化学性能,在1 A/g的电流密度下具有389 F/g的比电容,约为Ti_(3)C_(2)Tx比电容的6倍;当电流密度为20 A/g时,其比电容为309 F/g;在电流密度为10 A/g时,经过1500次充放电循环后,电容保持率为82%。  相似文献   

2.
采用螯合法制备了RGO/δ-MnO_2复合材料,并用X射线粉末衍射(XRD)、低压氮气吸附脱附(BET)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能谱(EDS)、热重(TGA)对其结构和物相进行表征。采用循环伏安测试(CV)、恒电流充放电(GCD)以及循环测试对所制材料电化学储能进行测试。结果表明RGO/δ-MnO_2复合材料比纯石墨烯和纯δ-MnO_2具有更优异的电化学性能。当电流密度为1 A·g-1时,RGO/δ-MnO_2复合材料的比电容可达322.6 F·g-1,比纯δ-MnO_2电极材料高234.2 F·g-1,比纯石墨烯高212.1F·g-1。当电流密度放大10倍后,RGO/δ-MnO_2复合材料的比电容保留率为79.1%。在1000次恒流充放电测试后,比电容为252 F·g-1(99.6%),说明该方法制备的RGO/δ-MnO_2复合材料是一种有应用前景的超级电容器电极材料。  相似文献   

3.
采用原位聚合法制备不同摩尔比的PANI/MoS_2纳米复合材料。通过X射线衍射、红外光谱、透射电镜等手段,对所制备的材料进行了结构和微观形貌的表征,结果表明:所制备的聚苯胺呈现棒状纳米纤维包覆在卷曲的纳米鳞片MoS_2片层上形成了PANI/MoS_2纳米复合材料。通过循环伏安法、恒流充放电等测试手段对材料的电化学性能进行了研究,结果表明:在不同电流密度下PANI∶MoS_2=1∶0.1的二元复合物比电容明显高于纯聚苯胺,在1 A/g时PANI∶MoS_2=1∶0.1的二元复合物的比电容值可达942.5 F/g,相比于同电流密度下的PANI的400.5 F/g的高出一倍。表明适量的MoS_2的掺入有助于提高PANI电极材料的电化学电容特性。  相似文献   

4.
以Ti_3C_2T_x为基底材料,异丙醇(C_3H_8O)为诱导剂,通过溶剂热法制备TiO_2/Ti_3C_2T_x复合材料。采用X射线衍射、扫描电子显微镜、X射线光电子能谱和紫外可见漫反射光谱对样品物相组成及微观结构进行表征。结果表明:在Ti_3C_2T_x层状表面均匀生长出锐钛矿晶型的TiO_2,所得TiO_2/Ti_3C_2T_x复合材料光生电子传输性能提高。TiO_2/Ti_3C_2T_x-24 h在500 W汞灯(波长为365 nm)照射下其光催化性能最佳,75 min可降解甲基橙(MO)95%,比纯TiO_2光催化剂降解效率提高了67.7%。  相似文献   

5.
本研究以MAXene(Ti_3AlC_2)刻蚀和剥离得到的MXene(Ti_3C_2)为基底,在酸性条件下将苯胺单体负载到MXene上制备MXene/PANI复合材料。利用场发射扫描电镜(SEM)、X射线衍射(XRD)对材料进行表征,在1 M H_2SO_4电解液中,对合成的复合材料进行电化学性能测试。结果表明,该种方法可成功制备MXene/PANI复合材料,在电流密度为0.5 A·g~(-1)时,复合材料比电容达到256.6 F·g~(-1),优异的电化学性能使得该材料可作为一种理想的超级电容器电极材料。  相似文献   

6.
采用一步水热法,在乙二胺的辅助下,制备了硫化钴/石墨烯气凝胶(CoS/GA)复合材料。通过X射线衍射法(XRD)、扫描电镜(SEM)、电化学性能测试对材料进行了表征和测试。结果表明:制备的材料晶型规整,30~100 nm的CoS粒子均匀地分布在石墨烯气凝胶上。用作超级电容器时,在电流密度0.5 A/g时,CoS/GA复合材料比电容值达574 F/g,是纯CoS的1.4倍;充放电循环1 000次后,比电容保持率为94.4%。硫化钴/石墨烯复合材料的电化学性能较好,具有较大的比电容和较好的循环稳定性,是一种可用于超级电容器的较有潜力的电极材料。  相似文献   

7.
通过一步电化学沉积法在泡沫镍(Ni foam,NF)集流体上制备了3D硫化镍(Ni3S2)材料,利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、拉曼光谱(Raman)、X射线光电子能谱(XPS)等对所制备材料的物化结构和形貌进行了表征,并采用循环伏安法(CV)、恒流充放电法(GCD)研究了其作为超级电容器电极的电化学性能。测试结果表明,制备的Ni3S2/NF-10材料具有相互连接的3D结构,表现出优异的赝电容性能。在1 A/g电流密度下,比电容高达2850 F/g。将电流密度提高到10 A/g,该材料比电容仍能达到1972 F/g,说明其具有优异的倍率性能。测试结果表明所制备的Ni3S2材料有望应用于电化学储能领域。  相似文献   

8.
以玉米芯为原料,经Zn Cl_2一步活化法制备超级电容器用电容炭电极材料。采用低温N_2吸附、扫描电镜(SEM)、X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)及X射线光电子能谱(XPS)等手段系统表征电容炭的微观结构及表面性质,并利用恒流充放电、循环伏安和漏电流等测试手段研究其在无机电解液体系(KOH)中的电化学性能。研究表明:在Zn Cl_2/玉米芯浸渍比为2:1、700℃的条件下活化1h可制备出比表面积为1340m~2/g、总孔容为1.135cm~3/g、中孔率高达97.7%的玉米芯电容炭。将其用作电极材料表现出良好的电化学特性,在50m A/g的电流密度下质量比电容为159F/g,2500m A/g电流密度下比电容仍可达137F/g,1000次循环后比电容保持率为92.5%,漏电流仅为1.9μA。结果表明:玉米芯电容炭具有良好的倍率特性和循环性能,是一种理想的电化学电容器用电极材料。  相似文献   

9.
以水溶性聚磷酸铵为致孔剂,苯乙烯为碳源,制备出分级多孔炭(HPC),然后经水热法制备得到二氧化锰包覆多孔炭复合材料。采用X射线衍射分析、扫描电子显微镜、热重分析和物理吸附等对所得材料表面形貌以及结构性能进行表征;采用循环伏安法、恒流充放电、交流阻抗和循环稳定性测试对其进行电化学性能分析。结果表明,当KMnO_4∶HPC=4∶1时,所得复合材料中二氧化锰的含量为55%时,电容性能最好。在0.2 A/g的电流密度下,1 mol/L Na_2SO_4电解液的三电极体系中测试,该复合材料比电容最高可达到216 F/g,且循环1 000次后,比容量保持81%。复合材料优异的电容性能归功于分级多孔炭发达的孔隙结构和均匀的二氧化锰包覆。  相似文献   

10.
采用水热法制备一维WO_3微米棒,并以其为模板利用Fe~(3+)水解成功制备出具有三维结构的WO_3/FeOOH复合材料。利用X射线衍射(XRD)、X射线光电子能谱仪(XPS)、场发射扫描电子显微镜(FESEM)、电化学测试等手段对材料的结构、组成以及电化学性能进行了表征。结果表明,WO_3/FeOOH复合材料作为超级电容器材料具有优异的电化学性能。电流密度为0. 5 A/g时,比容量高达296. 7 F/g;电流密度为10 A/g时,比容量为171. 7 F/g。并且在电流密度为10 A/g时循环1 000次后,其比容量保持率为92. 3%。  相似文献   

11.
利用少量乙二胺作为还原剂,在水热条件下制备了还原氧化石墨烯/石墨烯量子点复合材料(rGO/GQDs)。由扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、红外光谱对材料的形貌和结构进行了表征,并研究了材料的电化学性能。结果表明:复合材料具有三维多孔结构和良好的电化学性能,在0. 3 A/g的电流密度下,复合材料的比电容达到了226. 54 F/g。在10 A/g电流密度下,经过10000次充放电循环后其比电容值仍为初始值的91. 4%。  相似文献   

12.
结合Li插层法制备的单层MoS2,分别采用溶液法和乳液法原位聚合制备了聚苯胺/MoS2复合材料。由FT-IR光谱对其结构进行表征,由电化学工作站测试其做电容器电极材料的电化学性能。结果表明,相同MoS2用量下,乳液法制备的聚苯胺/MoS2复合材料在0.8 A/g电流密度下的比电容为245 F/g,是溶液法聚苯胺/MoS2复合材料的3倍;充放电1000圈后的比电容保持率为82%,比溶液法聚苯胺/MoS2复合材料高11%,显示出更好的电容性能。  相似文献   

13.
采用水热合成法,制备了不同比例的RGO/TiO_2复合材料,并采用X射线衍射(XRD)和透射电子显微镜(TEM)对其结构和物相进行表征。将所制备的材料组装到简易的三电极体系中,采用循环伏安(CV)、恒电流充放电(GCD)以及电化学阻抗谱(EIS)测试对所制材料的电化学储能进行测试。研究结果表明RGO/TiO_2复合材料比纯的石墨烯具有更优异的电化学性能。当电流密度为1A·g-1,4mol·L-1KOH条件下,RGO∶TiO_2=10∶1时比电容可达177·F·g-1,该结果表明水热法制备的复合材料在超级电容器材料中具有广泛的应用前景。  相似文献   

14.
分别以纯水、50%(体积分数,下同)纯水与50%乙醇混合溶液、乙醇为溶剂制备了CoMn_2O_4纳米电极材料,研究了溶剂对CoMn_2O_4材料形貌、微观结构及电化学性能的影响。结果表明:采用纯水为溶剂制备的CoMn_2O_4材料具有片状结构,在电流密度为1 A/g时,比电容为446 F/g,在电流密度为5 A/g条件下,1 000次充放电循环后电容保持率为77%;50%纯水加50%乙醇为溶剂制备的CoMn_2O_4材料具有颗粒与片状混合结构,在电流密度为1 A/g时,比电容为684 F/g,在电流密度为5 A/g条件下,1 000次充放电循环后电容保持率为81%;采用乙醇为溶剂制备CoMn_2O_4材料具有颗粒状多孔结构,在电流密度1 A/g条件下,比电容为850 F/g,在电流密度为5 A/g条件下,1 000次充放电循环后电容保持率达86%,乙醇为溶剂制备的颗粒状多孔的CoMn_2O_4材料表现出更为优异的超电容性能。  相似文献   

15.
本文研究制备一种CoNiO_2/碳纳米复合材料的方法。采用X-射线粉末衍射仪(XRD)和场发射电子显微镜(FESEM)表征产物的相结构与形貌,结果表明获得了CoNiO_2/碳纳米复合材料。复合材料的电化学性能采用循环伏安法(CV)和单电极充放电测试。将复合材料、活性炭(AC)和PVA-KOH电解质膜组装成不对称超级电容器,电性能测试结果表明在充放电电流密度为12 mA·cm~(-2)下其比电容最高达670 F·g~(-1)并稳定保持2000个循环;经过16000次循环后,其比电容仍有482.79 F·g~(-1),显示出高的比电容和长的循环稳定性。  相似文献   

16.
以三维泡沫镍(NF)为模板,在不添加模板剂的条件下,通过电沉积法沉积石墨烯(G),再采用水热合成制备纳米片二氧化锰(Mn O_2),得到自支撑电极复合材料G/Mn O_2/NF,改善其作为电极材料的电化学性能。用X射线衍射(XRD)、拉曼光谱(Raman)和扫描电子显微镜(SEM)对复合材料的微观结构和表面形貌进行分析,通过循环伏安(CV)、恒电流充放电(GCD)、交流阻抗(EIS)测试了电极复合材料的电化学性能。结果表明:在电流密度为1 A/g的条件下,复合电极材料的比电容达到722 F/g,经过1 000次循环后比电容保持率为97%。  相似文献   

17.
通过硝酸铈的乙醇溶液燃烧一步合成了含有微量碳的二氧化铈纳米材料(C-CeO_2)。电化学测试结果表明,C-CeO_2纳米材料在1 A/g电流密度时的比电容为125 F/g,是相同条件下纯CeO_2纳米材料比电容(55 F/g)的2.3倍。另外,C-CeO_2纳米材料在循环充放电测试1 000次后的比电容保持率高达83%。  相似文献   

18.
徐舟  侯程  王诗琴  王佳其  庄严  贾海浪  关明云 《化工进展》2020,39(10):4088-4094
以Ni(NO3)2为原料、NaOH为沉淀剂和羟基化碳纳米管(CNT)为基质首先制备了Ni(OH)2/CNT复合材料, 然后将其于一定温度下煅烧,使其转变为NiO/CNT复合材料。用X射线粉末衍射仪(XRD)、场发射电子显微镜(FESEM)和透射电子显微镜(TEM)表征了样品的晶相与形貌,结果表明NiO纳米粒子紧密锚附在碳纳米管表面。复合材料可能的形成机理被提出。采用循环伏安法(CV)、单电极充放电和电化学阻抗研究了反应条件对其电化学性能的影响,确定最佳制备条件。将复合材料正极、活性炭负极和PVA-KOH电解质膜组装成准固态不对称超级电容器,电化学性能测试结果表明,在充放电电流密度11.2mA/cm2下,其比电容达到868.0F/g并保持稳定循环3700圈。7500次循环后,其比电容值仍有564.2F/g,显示出高的比电容和长的循环稳定性。  相似文献   

19.
王丽  夏友付  沈悦  李涛 《现代化工》2023,(6):172-175
以柠檬酸和组氨酸为碳源构筑了组氨酸功能化石墨烯量子点@氧化镍(His-GQD@NiO)复合材料。利用X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)以及恒流充放电仪等对复合材料的结构、形貌和电化学性能进行表征与分析。结果表明,该复合材料表现出优异的电化学性能,在电流密度为1 A/g时,比电容达到542 F/g,并且具有良好的循环稳定性(5 000次循环后电容保持率为94.8%)。良好的电化学性能归因于材料优异的导电性、结构的稳定性以及高效的电解液传输通道。  相似文献   

20.
用电化学法控电位制备石墨烯/Co2O3-NiO薄膜电极,通过XRD、Raman、SEM、TEM等仪器对所制备的薄膜进行表征。复合材料中Ni和Co主要以NiO和Co2O3的形式负载于石墨烯的表面,直径在50~200 nm之间。循环伏安测试结果表明,石墨烯/Co2O3-NiO复合材料性能较纯石墨烯材料明显提升。恒电流充放电测试表明,石墨烯/Co2O3-NiO复合材料具有高比电容,在2 A/g的电流密度下,复合材料的比电容最高达到503 F/g,循环500次后比电容保持率为91%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号