首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用硅烷偶联剂(KH550)及十六烷基三甲基溴化铵(CTAB)对凹凸棒石粉体进行改性,并将改性前后的凹凸棒石粉体与硅灰石复合填充至聚四氟乙烯(PTFE),制备PTFE复合材料。采用傅里叶红外光谱仪(FTIR)、扫描电子显微镜(SEM)、邵氏硬度计、环块摩擦磨损试验机、万能试验机对改性凹凸棒石粉体的理化性能及复合材料摩擦学性能进行表征。结果表明:凹凸棒石及硅灰石的加入可以降低复合材料的磨损率。经CTAB改性的凹凸棒石与硅灰石填充至PTFE,复合材料的邵氏硬度增至70,磨损率降至1.54×10-6 mm3/(N·m),压缩性能提高40%左右。对凹凸棒石进行表面改性,可提高粉体与PTFE基体的界面结合,从而改善复合材料摩擦学性能和力学性能。  相似文献   

2.
网络互穿型碳化硅陶瓷/铁基复合材料制备及其耐磨性能   总被引:1,自引:0,他引:1  
王倩  刘桂武  郑开宏  李林  王娟  乔冠军 《硅酸盐学报》2012,40(4):493-494,495,496,497
通过酚醛树脂固化、碳化及原位硅化的技术制备复杂形状SiC陶瓷,并利用金属浇注工艺制备出了以高锰钢、高铬铸铁为基体的2种网络互穿型SiC陶瓷/金属复合材料。借助湿式橡胶轮摩擦磨损试验机和UMT-3多功能摩擦磨损试验机测试该2种复合材料及2种基体的摩擦学性能,并采用扫描电子显微镜分析了复合材料和基体磨损后的表面形貌。结果表明:由于SiC陶瓷体的强度、硬度比金属基体高,导致在磨损过程中2种基体材料的磨损量较大,且在复合材料表面形成微凸起,使得复合材料的耐磨性能明显提高;SiC陶瓷/高铬铸铁复合材料的耐磨性优于SiC陶瓷/高锰钢复合材料,但SiC陶瓷/高锰钢复合材料的界面结合更好。  相似文献   

3.
种传广 《安徽化工》2013,39(4):43-45
通过溶液混合和中温固化工艺制备出碳纤维增强环氧树脂/丙烯酰胺复合材料。研究了碳纤维对复合材料力学性能和摩擦学性能的影响,并根据复合材料摩擦表面的SEM图分析了复合材料的摩擦磨损机理。  相似文献   

4.
赵运才  刘小强 《陶瓷学报》2009,30(4):486-490
在UMT-2微观磨损试验机(USA)上研究了SiC纤维在复合材料摩擦行为过程中的作用,讨论了纤维含量、摩擦行为过程对复合材料摩擦学性能的影响,并对纤维增强铝硅酸盐玻璃陶瓷复合材料的磨损失效机理进行了探讨。研究结果表明:SiC纤维/玻璃陶瓷复合材料摩擦系数随对磨时间的变化是由起始时的较低值逐步过渡到稳态数值,但在摩擦过程的后期摩擦系数表现出明显的波动。复合材料的磨损失重随磨损时间的延长而逐渐增大,复合材料的耐磨性能下降,磨损失重增加。复合材料基体与摩擦对磨件间存在粘着现象,但其主要磨损失效形式仍为磨粒磨损和疲劳磨损。复合材料界面结合性能与磨损表面上纤维的排列对复合材料的摩擦学性能是有较大影响的。  相似文献   

5.
吴迪  白志民  张晶 《硅酸盐学报》2021,(10):2078-2088
将机械力化学改性后的凹凸棒石和硅灰石粉体添加到聚四氟乙烯(PTFE)中,通过机械搅拌、冷压烧结制成矿物/聚合物复合材料。采用X射线衍射、Fourier变换红外光谱、扫描电子显微镜、热重–差热同步热分析、偏光显微镜、X射线光电子能谱、邵氏硬度计和环块摩擦磨损试验机对复合材料的理化性能及其摩擦磨损特征进行了研究。结果表明:添加凹凸棒石和硅灰石后,PTFE复合材料的结晶度、玻璃转化温度降低,硬度增加,摩擦系数稍有增加但磨损率显著降低。研究认为,凹凸棒石和硅灰石有利于金属摩擦副表面转移膜的形成,有效改善了PTFE复合材料与对偶金属摩擦副摩擦界面的自适应性,是导致摩擦副磨损率显著降低的主要原因。  相似文献   

6.
用端异氰酸酯基聚丁二烯液体橡胶与环氧树脂制得端异氰酸酯基聚丁二烯橡胶-环氧树脂聚合物(ETPB)。在ETPB中分别加入质量分数为5%和10%的纳米三氧化二铝,并用胺类固化剂固化,制得ETPB/纳米三氧化二铝复合材料。测试了环氧树脂、ETPB和ETPB-纳米三氧化二铝复合材料在干滑动下的摩擦性能,考察了磨损率及摩擦系数与载荷和滑动速度之间的关系,用扫描电子显微镜对几种材料磨损表面进行了观察。结果表明,用端异氰酸酯基聚丁二烯液体橡胶改性环氧树脂可提高干滑动条件下环氧树脂的抗磨损性能;填充纳米三氧化二铝可显著提高ETPB的抗磨损性能,其最佳填充质量分数为5%。  相似文献   

7.
贝壳微粉改性EP复合材料的力学及摩擦学性能研究   总被引:1,自引:0,他引:1  
以贝壳微粉为刚性填料,研究了硅烷偶联剂对贝壳微粉改性环氧树脂复合材料性能的影响。测试了该复合材料的力学、摩擦磨损等性能,利用扫描电子显微镜对其试样摩擦面和对偶环的形貌进行了观察。结果表明,偶联剂的加入优化了贝壳微粉在环氧树脂基体中的分散,有效地改善了材料的力学和摩擦学性能。  相似文献   

8.
对几种玻璃纤维织物增强酚醛树脂复合材料进行了双向滑动摩擦试验,考察织物结构和基体树脂对复合材料的摩擦磨损性能的影响。研究结果表明:通过添加自润滑颗粒可提高复合材料的摩擦磨损性能,其中石墨的耐摩擦磨损效果比聚四氟乙烯(PTFE)显著;织物结构对复合材料摩擦性能的影响,主要受控于织物的表面粗糙度和织物结构对复合材料树脂体积分数的影响。此外,复合材料存在一个较优的树脂体积分数范围,在此范围内,复合材料的摩擦磨损性能较为优异。  相似文献   

9.
硅灰石与连续玻璃纤维毡组合增强聚丙烯的力学性能   总被引:8,自引:0,他引:8  
采用硅灰石与连续玻璃纤维毡组合增强聚丙烯,研究了硅灰石的含量,玻璃纤维毡的面密度、基体树脂的性质及界面改性等对材料力学性能的影响。结果表明:采用硅灰石与连续玻璃纤维毡组合增强,可提高复合材料的拉伸、弯曲强度及模量,但过高的硅灰石含量,会导致拉伸及弯曲强度下降,材料的力学性能随着所用玻璃纤维毡面密度的增大而显著提高,采用偶联剂对硅灰石进行处理及在基体聚丙烯中添加功能化聚丙烯,可改善界面结合、提高材料性能,随着功能化聚丙烯含量的增加,材料的拉伸、弯曲强度及模量有所提高,但含量过高时,会引起材料冲击强度的下降;组合增强材料的性能与基体树脂本身的力学性能密切相关,同时还受基体树脂熔体流动性的影响。  相似文献   

10.
为提高环氧树脂的减摩耐磨性能,本工作采用高硬度纳米氮化硅粒子和具有优异自润滑和导热性能的短碳纤维进行填充改性,以期通过填料之间的协同作用,显著降低复合材料的表面摩擦力和摩擦面温度,从而提高抵抗磨损能力。摩擦磨损实验结果表明,同时加入纳米氮化硅粒子和短碳纤维时,可以获得优于加入单一填料所获得的摩擦磨损性能。纳米氮化硅粒子/短碳纤维/环氧树脂复合材料的磨损机理主要是粘着磨损和磨粒磨损。  相似文献   

11.
陶瓷纤维增强摩擦材料的性能研究   总被引:1,自引:0,他引:1  
采用热压成型工艺制备出陶瓷纤维增强改性酚醛树脂摩擦材料,分析了纤维长度对摩擦材料抗热衰退性能、耐磨性能和力学性能的影响,并借助扫描电子显微镜(SEM)观察了摩擦材料的断口形貌.结果表明,陶瓷纤维长度对摩擦材料的摩擦磨损性能和力学性能影响很大;在纤维用量不变的条件下,长陶瓷纤维代替短陶瓷纤维后,摩擦材料在各温度段下的摩擦系数增大,耐高温性和热衰退现象得到了明显改善,冲击强度和硬度得到显著提高,在长陶瓷纤维质量分数为10%时,摩擦材料的综合摩擦磨损性能最好;SEM分析表明,长陶瓷纤维与树脂基体之间的界面粘结强度比短陶瓷纤维高.  相似文献   

12.
采用手糊成型工艺制作碳纤维复合材料(CFRP),选用T-700碳纤维为增强体,用气相氧化法对其进行表面处理,选用双马来酰亚胺(BMI)改性的耐高温环氧树脂为树脂基体。结果表明,碳纤维经过表面处理后,其表面与基体树脂的接触角由116.8°下降到50.5°,并且表面出现条纹沟槽,改善了碳纤维表面对基体树脂间的界面性能。同时,玻璃化转变温度提高了4.0%,热分解温度提高了1.9%。  相似文献   

13.
酚醛树脂主要用于制造各种塑料、涂料、胶黏剂及合成纤维等。本论文中使用腰果壳酚和环氧树脂对酚醛树脂进行复合改性,并以该复合改性树脂为基体制备了连续纤维增强摩擦材料。并利用TG对复合改性树脂的热性能进行了表征,利用chase摩擦试验机,对摩擦制动材料的摩擦性能进行了表征。TG测试表明,复合改性树脂在400°C才开始失重,但失重速率较大;chase摩擦磨损测试表明,以复合改性树脂为基体制备的摩擦材料其摩擦系数可以稳定在0.45以上。  相似文献   

14.
结合γ-射线辐照改性PBO纤维表面技术,将辐照介质(接枝体化合物)作为树脂基体的一个成分设计出环氧树脂基体配方.通过浸润试验、树脂浇铸体力学试验、纤维湿法缠绕工艺试验和Microbond界面剪切试验等方法研究了树脂基体的各项性能.结果表明,与另外几种常用的树脂基体相比,本文设计的树脂基体与表面改性PBO纤维的浸润性能和界面粘接性能有明显的提高.树脂浇铸体力学性能满足高性能纤维复合材料的要求.  相似文献   

15.
利用多巴胺自聚合功能化纳米金刚石(ND),制备出聚多巴胺包覆纳米金刚石(D-ND),以克服ND自身聚集的缺点,并提高与环氧树脂基体的相容性。采用"淤浆复合法"制备了环氧树脂/D-ND纳米复合材料,由于聚多巴胺保留酚羟基,能在D-ND与环氧树脂基体之间构建较强的界面作用力。复合材料的拉伸强度提高12.22%,拉伸模量提高19.57%,伸长率提高38.37%。热分解温度提高了26℃、硬度提高25.15%,1%(wt)D-ND含量复合材料具有最好的摩擦学性能,摩擦系数降低11.36%,磨痕深度降低20.93%,磨损率降低37.67%。阐明了D-ND的加入对环氧树脂/D-ND纳米复合材料机械性能、热性能以及摩擦学等性能的影响,为环氧树脂改性提供了一种新的行之有效的方法。  相似文献   

16.
王萍萍  芦艾  陈晓媛  王港  张晴 《中国塑料》2008,22(11):43-46
研究了聚酰胺66(PA66)改性玻璃纤维(GF)增强聚苯硫醚(PPS)(PPS/PA66/GF)复合体系的摩擦因数、磨损体积、磨损后表面的微观形貌及损耗因子峰值、储能模量对摩擦因数的影响。结果表明,PA66的加入显著改善了复合材料的摩擦学性能,当PA66含量为40 %(质量分数,下同)时,磨损最小,为5.24 mm3,相对于PPS+30 %GF(13.60 mm3)下降了61 %;扫描电镜分析磨损表面,随着PA66含量的增加,磨损机理由磨粒磨损转为粘着磨损;复合材料损耗因子峰值越大,摩擦因数越小;初始储能模量越大,摩擦因数越小。  相似文献   

17.
车飞妮  郭峰  张树康  张建军  车清论 《塑料》2020,49(4):111-114
摩擦制动是交通车辆和机械设备等正常工作和安全运行的保障,因此,制动用摩擦材料的摩擦学性能研究已成为当今重要的研究课题。主要介绍了树脂基摩擦材料与摩擦配副的摩擦学机理,总结并分析了摩擦界面摩擦膜形成的影响规律和机理,讨论了摩擦界面的接触行为对摩擦膜的形成机理。在摩擦过程中,摩擦膜对摩擦材料的磨损和摩擦稳定性具有重要的作用,因此,摩擦膜的结构和性能是影响摩擦系统的安全和稳定的关键因素。由目前研究结果可知,后期应重点关注新型绿色树脂粘结剂和填料的研发、摩擦界面形成摩擦膜深度表征及摩擦材料结构的优化设计。  相似文献   

18.
采用硅烷偶联剂KH550对氧化石墨烯(GO)进行表面改性,制备改性的氧化石墨烯(MGO),采用FTIR和XRD对MGO进行结构表征,通过共混、混炼、模压成型工艺制备酚醛树脂(PF)/MGO复合材料,研究GO的表面改性对PF复合材料的力学性能、动态力学性能和摩擦性能的影响,采用扫描电子显微镜(SEM)对复合材料的磨损表面进行形貌分析。结果表明:GO的表面改性对提高PF复合材料的力学和动态力学性能、摩擦学性能具有明显效果,相比于未改性的PF/GO复合材料,其冲击强度提高了24.32%,弯曲强度提高了10.95%,弯曲模量提高了21.21%,松弛模量提高了42.22%,形变率降低了40.79%,同时改性的PF/MGO复合材料具有较高的摩擦系数和磨损率;扫描电镜观察结果显示,复合材料的磨损表面显得平整、光滑。  相似文献   

19.
为明确树脂含量对复合材料摩擦学性能的影响,采用粉末冶金法成功制备了二硫化钨(WS2)与碳化硅(Si C)协同改性增强含铜聚酰亚胺(PI)树脂基复合材料。利用X射线衍射仪、扫描电子显微镜、万能力学性能试验机、摩擦磨损试验机等手段探究了PI树脂含量对复合材料微观组织、物理力学性能、摩擦磨损性能及磨损机制的作用行为。结果表明,材料制备过程中仅存在树脂基体固化烧结,并未与增强相发生化学反应,从而确保各相充分发挥其性能。同时,发现PI树脂含量对复合材料显微组织存在显著影响,由WS2与Si C形成的“核-壳”结构从高树脂含量下较大的扁平状转变成低树脂含量下的类球状及细小扁平状结构;且复合材料的致密度及显微硬度均随PI树脂含量的降低而呈现先增大后减小的趋势,压缩强度则呈上升趋势。PI树脂基复合材料的磨损率及平均摩擦系数随PI树脂含量的降低呈现出先减少后增加的趋势,当PI树脂质量分数为50%时复合材料获得了最低的摩擦系数(0.42)和磨损率[0.89×10-14 cm3/(N·m)]。随着PI树脂含量的减少,复合材...  相似文献   

20.
以丁腈橡胶改性酚醛树脂为基体,芳纶纤维、玻璃纤维为增强纤维,选用不同类型的纳米颗粒作为填料设计摩擦材料组分配比,并通过热压烧结制备摩擦材料。通过摩擦磨损试验机测试其在干摩擦条件下的摩擦学性能,并用扫描电镜(SEM)对材料的磨损形貌进行观察分析,以研究不同类型的纳米颗粒对摩擦材料性能的影响。研究表明:在干摩擦条件下,经过纳米颗粒改性的摩擦材料摩擦系数、硬度比未改性的材料有不同程度的提高,同时磨损率有很大程度的降低;纳米颗粒改性的摩擦材料摩擦系数、磨损率变化趋势具有一致性,均随着实验载荷、滑动速度的增大而逐渐减小;纳米颗粒改性后的摩擦材料磨损机理表现为疲劳磨损与磨粒磨损并存,而未改性的材料磨损机理主要表现为疲劳磨损。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号