首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
张聪聪  郑梦凯  李伯耿 《化工学报》2019,70(10):4043-4051
分别以聚四氢呋喃二醇(PTMG)、聚己内酯二醇(PCL)、高顺式端羟基聚丁二烯(HTPB)和自由基聚合制得的端羟基聚丁二烯(FHTPB)为软段,采用溶液聚合两步法制得了四种聚氨酯弹性体(PUE)。通过拉伸试验、动态力学性能分析(DMA)、差示扫描量热(DSC)和热重分析等手段,考察了软段结构对它们室温及低温下力学性能、热性能等的影响。结果表明,四种PUE低温(-30℃)下的拉伸强度和断裂伸长率均大于室温下的对应值。这不仅与低温下软段诱导结晶所产生的自增强效应有关,也与软、硬两段的微相分离程度增大有关。相较于其他三种PUE,HTPB-PUE软段不仅玻璃化温度(T g)最低,而且极性也最弱,因而微相分离程度高,具有优异的柔性,-30℃下其断裂伸长率仍达660%以上。PCL-PUE和PTMG-PUE因软段易结晶,且软段与硬段的微相分离程度低,则刚性强。低温循环拉伸试验表明,-30℃下HTPB-PUE和FHTPB-PUE有较强的弹性恢复能力,而PCL-PUE和PTMG-PUE则相对较差。DSC和DMA结果显示HTPB-PUE的T g远低于其他三种PUE,其T g(DSC)低至-103℃。此外,四种PUE的初始分解温度十分相近,均在270℃左右。  相似文献   

2.
A series of six thermoplastic polyurethane elastomers were synthesized from a 4,4′-methylene diphenyl diisocyanate (MDI) and 1,4-butanediol (BDO) chain extender, with poly(ethyleneoxide) (PEO), poly(tetramethylene oxide) (PTMO), poly(hexamethylene oxide) (PHMO), poly(octamethylene oxide) (POMO), poly(decamethylene oxide) (PDMO), and poly(1,6-hexyl carbonate)diol (PCDO) macrodiol soft segments. The soft-segment molecular weights employed were similar (approximately 1000 g/mol) and each polyurethane contained 55% (w/w) of the soft-segment macrodiol. Differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), wide-angle X-ray diffraction (WAXD), and Fourier transform infrared spectroscopy (FTIR) techniques were employed to characterize the morphology. Tensile and Shore hardness tests were also performed. Materials were tested in the as-molded, solvent-cast, and annealed states. It was found that the polyurethanes produced from macrodiols with the highest CH2/O ratio displayed greater hard-domain crystallinity, a higher degree of phase separation, and the greatest hardness, stiffness, and opacity. POMO- and PDMO-based polymers displayed evidence of paracrystallinity in the soft domains. The PCDO-based material displayed a higher degree of phase mixing compared to the polyether-based materials. Annealing increased hard-domain crystallinity in all the polyether-based materials. The solvent-cast POMO- and PDMO-based materials had poor mechanical properties and were difficult to cast. The materials containing macrodiols with the lowest CH2/O ratio were more readily solvent-cost and produced strong, useful films. Morphologies of the solvent-cast materials differed greatly from those of the molded materials. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
聚氨酯微孔弹性体,由高活性聚醚多元醇、多异氰酸酯、醇类扩链剂、催化剂等高速混合,一次浇注成型,考察乙二醇用量对聚氨酯微孔弹性体工艺及性能的影响。结果表明,随着扩链剂乙二醇量的增加,聚合反应体系乳白时间和凝胶时间逐渐缩短,聚氨酯微孔弹性体材料密度略有增加,拉伸强度和硬度明显提高,断裂伸长率明显下降。  相似文献   

4.
分别以5种异氰酸酯为硬段,聚己二酸1,4-丁二醇酯二醇(PBA)为软段,制备了不同异氰酸酯型的热塑性聚氨酯弹性体(TPU)。通过傅里叶变换红外光谱(FTIR),差示扫描量热(DSC)和电子拉伸等测试对其结构和性能进行表征,探究了异氰酸酯类型对热塑性聚氨酯弹性体的软硬段相互作用、PBA结晶性和机械性能的影响。结果表明,HDI-TPU氨基氢键化程度最高,HMDI-TPU的硬段间氢键化程度、软段结晶度最高,IPDI-TPU的氢键化程度、软段结晶度最低。在制备的5种异氰酸酯型TPU中,HDI-TPU的拉伸强度为29.47 MPa,断裂伸长率874%,邵D硬度44,综合机械性能最佳。  相似文献   

5.
《应用化工》2022,(4):811-815
分别以5种异氰酸酯为硬段,聚己二酸1,4-丁二醇酯二醇(PBA)为软段,制备了不同异氰酸酯型的热塑性聚氨酯弹性体(TPU)。通过傅里叶变换红外光谱(FTIR),差示扫描量热(DSC)和电子拉伸等测试对其结构和性能进行表征,探究了异氰酸酯类型对热塑性聚氨酯弹性体的软硬段相互作用、PBA结晶性和机械性能的影响。结果表明,HDI-TPU氨基氢键化程度最高,HMDI-TPU的硬段间氢键化程度、软段结晶度最高,IPDI-TPU的氢键化程度、软段结晶度最低。在制备的5种异氰酸酯型TPU中,HDI-TPU的拉伸强度为29.47 MPa,断裂伸长率874%,邵D硬度44,综合机械性能最佳。  相似文献   

6.
含液晶基元聚氨酯对普通聚氨酯性能的影响   总被引:1,自引:0,他引:1  
张宏元  高建宾  陶永杰 《粘接》2003,24(4):10-12
合成了一类既含有刚性液晶基元又含有柔性链段的主链型含液晶基元聚氨酯(LCPU),以端羟基四氢呋喃-环氧乙烷共聚醚为基体材料,多异氰酸酯N-100为固化剂,探讨这类含液晶基元聚氨酯对聚氨酯弹性体力学性能的影响。结果表明,5种含液晶基元聚氨酯随着柔性链段长度的变化和在聚氨酯弹性体中加入比例的变化。表现出对聚氨酯弹性体力学性能的影响有较大的差异。与未改性聚氨酯弹性体相比,改性后聚氨酯弹性体共混物垃伸强座量大提高71%倍.断裂伸长率最大提高8.7倍.  相似文献   

7.
This article studies the development of a series of heterocyclic polyurethanes (PUs) with various pyridazine content and different crosslinker structure in their main chains. All of the isocyanate‐terminated PU prepolymers were prepared from poly(tetramethylene oxide) glycol of molecular weight 1400 (Terathane 1400) and 1,6‐hexamethylene diisocyanate. The properties of the obtained linear and crosslinked pyridazine‐based PU were compared with the properties of common PUs obtained by chain extension with 1,4‐butanediol. All the obtained PUs were characterized through spectral and thermal behavior. The pyridazine‐based PU showed improved thermal stability with 10% weight loss at temperatures above 370–400°C. With the increase of pyridazine content the values of Young's modulus are higher and the strain at break decreases. Increasing pyridazine content leads to increased films surface hydrophilicity. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
高性能浇注型聚氨酯弹性体的耐热性能   总被引:2,自引:1,他引:1  
用不同结构的多元醇和二异氰酸酯合成了一系列浇注型聚氨酯弹性体(PU),研究了PU的物理机械性能、耐热性和动态力学性能.结果表明,当二异氰酸酯选为对苯二异氰酸酯(PPDI)、扩链剂为1,4-丁二醇(BD)时,不同结构的多元醇制备PU的耐热性从优到劣依次为聚己内酯二醇体系,聚己二酸1,4-丁二醇酯体系,聚碳酸酯二醇(PCD)体系,聚四亚甲基醚二醇体系;当多元醇选取PCD、扩链剂为BD时,不同结构的二异氰酸酯制备PU的耐热性从优到劣依次为1,5-萘二异氰酸酯(NDI)体系,对苯二异氰酸酯(PPDI)体系,3,3'-二甲基联苯-4,4'-二异氰酸酯(TODI)体系,4,4'-二苯基甲烷二异氰酸酯(MDI)体系;TODI、NDI制备PU的动态力学性能优于PPDI和MDI制备的PU.  相似文献   

9.
Novel type of mesogenic chain extenders used in this study are N,N′‐bis(4‐hydroxyphenyl)‐3,4,3′,4′‐biphenyldicarboxyimide (BPDI) and N,N′‐bis[4‐(6‐hydroxyhexyloxy) phenyl]‐3,4,3′,4′‐biphenyldicarboxyimide (BHDI). BHDI has a flexible spacer of 6‐methylene units but BPDI does not. The liquid crystalline polyurethane elastomers were synthesized from BPDI or BHDI as a mesogenic chain extender, 4,4′‐diphenylmethane diisocyanate, and poly(oxytetramethylene)glycol (MW 1000) as a soft segment. Polyurethane based on BHDI exhibited two melting transitions. However, any melting behavior was not shown in the BPDI‐based polyurethanes because of higher melting temperature than decomposition temperature. The composition of polyurethanes was varied as a means of manipulating liquid crystalline behavior and physical properties. The BHDI‐based polyurethanes containing above 50 wt % of hard segment content exhibited nematic liquid crystal behaviors. As the hard segment content of the BHDI‐based polyurethanes increased, the glass transition temperature (Tg), strength, modulus, and the amount of hydrogen bonding increased. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 577–585, 2000  相似文献   

10.
聚氨酯弹性体结构对阻尼性能及力学性能的影响   总被引:1,自引:0,他引:1  
以不同相对分子质量的聚氧化丙烯二醇(PPG)为软段,不同异构体的二苯基甲烷二异氰酸酯(MDI)、甲苯二异氰酸酯(TDI),以及扩链剂新戊二醇(NPG)、三羟甲基丙烷(TMP)、1,4-丁二醇(BDO)为硬段,采用预聚法合成了聚氨酯弹性体,并对其损耗因子(tanδ)与力学性能进行了测试。结果表明:随着4,4’-MDI含量的增加,聚氨酯弹性体的tanδ曲线峰高降低,即阻尼性能下降,力学性能提高;随着2,4-TDI含量的增加,阻尼性能提高,力学性能降低;扩链剂TMP含量增加,tanδ峰向高温方向移动;扩链剂NPG含量增加,阻尼性能提高;软段相对分子质量增大,tanδ峰向低温移动,PPG相对分子质量从400增加到2 000时,tanδ峰的位置从80℃变化到-20℃左右。  相似文献   

11.
A series of segmented polyurethanes from two polyols, 4,4′-diphenylmethane diisocyanate (MDI) and butane diol was synthesized. The degree of chemical crosslinking was controlled by varying the ratio of poly(oxypropylene) diol to poly(oxypropylene/oxyethylene) triol. The samples were prepared at the stoichiometric ratio of NCO to OH groups and at a constant concentration of hard segments (butane diol; MDI) equal 50 wt %. At low concentrations of the triol the molecular weight of the polyurethanes increases; at higher concentrations (above 9 mol %) crosslinked products are obtained. All samples show a distinct two-phase structure and in the region of 0–150°C the dynamic mechanical behavior is affected by the hard phase. Chemical crosslinking was found to increase the tensile strength and strain at break, but did not affect appreciably the tear strength, hardness, and soft segment glass transition. The stress relaxation rate at room temperature was found to depend both on the elongation and on the degree of crosslinking. A comparison of the sol fractions ws found for crosslinked samples with the predictions of the theory of branching processes proved that the achieved conversions of reactive groups in networks are high (~ 0.98).  相似文献   

12.
A new diisocyanate, 1,4-eyclohexane diisocyanate (CHDI), has been used in a series of polyether-based polyurethane elastomers. The slightly opaque samples are semicrystalline in nature with high performance properties, including high softening temperature, very good thermal stability, high tensile and tear strengths, excellent solvent resistance, and low hysteresis in compressive fatigue. Polymer properties are in part due to the small, compact, symmetrical structure of the aliphatic CHDI. Comparison of the physical, mechanical, and thermal properties of polyurethanes prepared from the aliphatic diisocyanate 4,4′-dicyclohexylmethane dilsocyanate (H12MDI) reveal the H12MDI polymers to be more flexible and transparent elastomers with lower softening temperatures and tensile moduli and higher hysteretic heat build up. They are generally soluble in organic solvents.  相似文献   

13.
The tearing energy theory developed to describe the failure properties of vulcanized rubbers is shown to be applicable to the cut growth and fatigue properties of cellular polyurethanes. The effective inherent flaw size to initiate cut growth in the cellular polyurethane predicted from fatigue results has been found to be similar to the measured size of the largest pore in the material. The cut growth properties of the cellular polyurethane have been compared with solid polyurethane of the same type, crosslinked polyurethanes, and vulcanized rubbers. It is found that the minimum value of tearing energy (T0) under which no fatigue failure occurs in the absence of chemical effects is far higher in polyurethanes than vulcanized rubbers. It is thought that this is due to the segmented structure of the polyurethane which has highly hysteresial tensile properties.  相似文献   

14.
Three series of weakly crosslinked polyurethanes based on a hydroxyterminated polybutadiene, hydroxyterminated butadiene–acrylonitrile copolymer, and hydroxyterminated ethylene–adipate–maleate–fumarate copolymer were prepared while varying the hard segment content between 1.72 and 2.36 mol ? NH? COO? /1000 g polymer. Information on the microphase structure and the properties of the synthesized polyurethanes was obtained by differential scanning calorimetry, wide‐angle X‐ray scattering, and mechanical studies. Up to a urethane concentration of around 2 mol ? NH? COO? /1000 g polymer, there is a mixture of hard–hard and hard–soft segments. Above this concentration a large part of the hard–soft segments passes into hard–hard crystallites, liberating the soft segments. The best mechanical properties of the studied polyurethanes were found for a urethane concentration of around 2 mol ? NH? COO? /1000 g polymer. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1858–1867, 2003  相似文献   

15.
Magnetorheological elastomers (MREs) are mainly composed of magnetizable particles and elastic polymer. The polymer matrix plays an important role in mechanical performances of MREs. In this study, the polyurethane (PU), which is synthesized by using toluene diisocyanate (TDI) and poly (propylene glycol) (PPG‐220), is selected as a matrix because it has better degradation stability than natural rubber and higher mechanical stability than silicone rubber. Four different MRE samples were fabricated by adjusting the reaction molar ratio of TDI to PPG to change the property of PU matrix. Structural characterization of the PU matrix was described by Fourier transform infrared analysis. The microstructures of samples were observed by using an environmental scanning electron microscope. The mechanical performances of samples, including shear modulus, magnetorheological effect (MR) effect, loss factor, and glass transition temperature (Tg), were characterized with dynamic mechanical analyzer. The results show that the shear modulus, the relative magnetic residual shear modulus and glass transition temperatures of samples increase with the increment of toluene diisocyanate, while the relative MR effects and loss factors decrease steadily. The experimental results indicate that optimal molar ratio (TDI : PPG) is 3 : 1. The field‐induced shear modulus of sample with molar ratio 3 : 1 is 4.9 MPa, and the relative MR effect is 121% under an external magnetic field of 800 mT at room temperature. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
通过预聚法合成了以己二酸乙二醇丙二醇二酯、聚四氢呋喃二醚、1,5-萘二异氰酸酯(NDI)、甲苯二异氰酸酯(TDI)、1,4-丁二醇及4,4'-二氨基-3,3'-二氯二苯甲烷为主要原料的聚氨酯弹性体。通过水解后弹性体的拉伸、撕裂等力学性能保持率的比较,发现NDI型聚氨酯弹性体比TDI型具有更好的水解稳定性;通过不同温度下和热空气老化后弹性体力学性能保持率的对比,证明NDI型聚氨酯弹性体的耐热稳定性要优于TDI型。  相似文献   

17.
以三官能度的聚醚多元醇、1,4-丁二醇和二苯基甲烷二异氰酸酯(MDI)为主要原料合成了聚氨酯弹性体。研究表明,硬段质量分数超过50%以后,伸长率降低,交联时间对聚氨酯(PU)弹性体整体的力学性能影响不大。在保持异氰酸酯指数为1.0和MDI含量不变的条件下,把1,4-丁二醇和聚醚多元醇的羟基摩尔比提高到1.50:0.33,材料的力学性能最佳。随着交联时间的增加,拉伸强度及硬度先增大后减小,伸长率呈减小的趋势。  相似文献   

18.
Magnetorheological elastomers (MRE) are mainly composed of soft magnetic particles and rubber‐like matrix. Previous studies have shown that the matrix has a greater impact on mechanical properties of MRE. In this article, a new kind of polyurethane material was fabricated and used as the matrix of MRE. The effect of several factors on the mechanical properties of MRE samples was experimentally studied, such as fabrication condition, content of iron particles, different weight ratio of castor oil and diphenylmethane diisocyanate, plasticizer. Their microstructures were observed, and the mechanical properties were measured using a testing system in the presence of an external magnetic field. The experimental results demonstrate that these factors have different impact on shear storage modulus, magneto‐induced modulus, MR effect and damping property. In addition, the damping property of these MRE is also higher than that of MRE based on the other matrix. This study can hopefully be applied to optimize the mechanical properties of MRE. POLYM. COMPOS., 37:1587–1595, 2016. © 2014 Society of Plastics Engineers  相似文献   

19.
20.
采用不同结构的异氰酸酯和多元醇制备了一系列聚氨酯弹性体,主要考察了异氰酸酯种类对聚氨酯弹性体力学性能的影响.研究表明,由1,5-萘二异氰酸酯制得的弹性体拉伸强度和撕裂强度较高,分别为38.75MPa和109.77 kN/m,而由对苯二异氰酸酯制得的弹性体具有最大的扯断伸长率(557.84%).此外还研究了多元醇种类和扩链系数α对弹性体力学性能的影响,研究表明,选用聚ε-己内酯二醇制得的弹性体具有较好的性能,且拉伸强度和撕裂强度均随扩链系数的增大先增大后减小,而扯断伸长率一直增大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号