首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
考虑对流和辐射的铸件凝固过程研究   总被引:4,自引:1,他引:3  
孙立斌  张殿德 《铸造》2000,49(7):413-417
在已有的铸造凝固过程计算机模拟基础上,考虑了对 和辐射对凝固过程热传递的影响。开发出在铸件凝固过程中综合考虑热传导、热对流和热辐射的计算程序。针对热残余和的计算。结合铸造中落砂工艺,对落砂前后不同的传热模型进行了相应的调整,为检验模型的准确性。试验研究了弓形应力框试验铸件的浇注过程。对比分析了试验结果和计算结果,指出新的模型更接近实际情况。  相似文献   

2.
In this study, a computational fluid dynamics (CFD) code was developed to calculate the filling pattern using volume of fluid (VOF) algorithm with donor–acceptor method for free surface simulation. This algorithm has been modified to include the pressure of the gas produced from foam degradation. For this purpose a heat transfer model and 2D foam degradation model were developed. In heat transfer model, radiation and conduction between foam and molten metal; and convection between gas and molten metal were considered. In order to evaluate the results of simulation, a bench scale casting apparatus was assembled and the casting was conducted in a transparent mold. The effect of several parameters such as coating thickness, foam density and vacuum level on the gap temperature, gap pressure and filling speed was studied with the developed software. It was found that the simulated results are in good agreement with experimental results.  相似文献   

3.
挤压铸造铸件凝固过程热力耦合分析   总被引:3,自引:0,他引:3  
白彦华  刘金生  任春艳 《铸造》2004,53(8):655-657
用热力耦合方法分析了锌铝合金挤压铸造凝固过程中的温度场以及由此产生的应力、应变场.对传热系统模型中的对流、辐射边界条件和凝固潜热进行了处理.建立了热粘弹塑性有限元模型,用有限元软件进行数值计算分析,并给出了计算结果.  相似文献   

4.
H型钢坯水冷金属型铸造充型凝固过程数值模拟   总被引:2,自引:0,他引:2  
薛祥  周彼德  张跃冰  萧劲 《铸造》2003,52(12):1182-1185
提出了处理水冷铸型边界条件的等效换热系数法,该法综合考虑了铸件与铸型问的辐射换热、间隙热阻及水冷铸型边界条件。获得了H型钢的充型流动过程及凝固过程的温叟场,并采用Xue判据预测了H型钢的缩松缺陷位置。为进一步改进H型钢水冷金属型铸造工艺提供了理论依据。  相似文献   

5.
为了尽可能缩短铸件凝固模拟的计算时间,从不同的角度对凝固模拟求解中的时间步长的计算进行了分析;并根据能量守恒原理,在考虑热传导、对流、辐射情况下进行了时间步长的推算,得出了差分网格单元在不同条件、不同位置的实用时间步长计算公式。通过实例验证,采用准确的时间步长,既能避免计算发散又能提高计算效率。  相似文献   

6.
采用正交设计方法研究单晶高温合金定向凝固过程数值模拟所需参数对温度场和冷却曲线的影响.结果表明:单晶高温合金凝固曲线对模拟参数十分敏感,特别敏感于铸件与铸型之间的界面换热系数.通过正交设计获得边界条件参数使模拟结果与试验结果吻合良好.确定符合DD6单晶高温合金凝固过程的数值模拟边界条件.  相似文献   

7.
研究铝铸锭凝固边界热交换的变化规律及数学模型,并对不同浇注温度下凝固过程的温度场进行模拟。利用实时数据采集系统获得凝固过程中铸锭和金属模温度变化历史数据,采用非线性反算法和一维传热差分法对试验数据处理,建立界面换热模型并将其应用于凝固温度场模拟中。结果表明:在铸锭表面凝固前后凝固界面热流密度可分段用指数函数来描述其变化规律,而所建立的热交换系数与边界温度的对应关系可更好地反映实际的传热情况。模拟结果与实验测温结果相符,验证了该铸件/铸型边界热交换规律的可靠性。  相似文献   

8.
Mold is the heart of the continuous casting machine. Heat transfer and solidification in a water cooled mold are the most important factors during the continuous casting of steel. For studying the temperature distribution of a mold wall, a simulated apparatus of mold was designed and experiments were performed by it. The measured results indicated that the mold wall temperature approaches the temperature of cooling-water. An equivalent thermal-conductivity coefficient was proposed and deduced on the basis of the conclusion of the experiments. This coefficient was applied to solve the heat transfer between the melt and cooling water, and to characterize the heat transfer capacity of the mold. By this equivalent thermal-conductivity coefficient, it is very easy and convenient to numerically simulate the solidification process of continuous casting. And the calculation results are in agreement with the experiments. The effects of casting speed and water flow rate on the mold temperature field were also discussed.  相似文献   

9.
TiAl基合金排气阀立式离心铸造充型及凝固过程数值模拟   总被引:3,自引:0,他引:3  
吴士平  郭景杰  贾均 《金属学报》2004,40(3):326-330
以N-S方程、连续性方程及Fourier导热方程为基础,结合离心力、重力及Coriolis力,在实验的基础上建立了立式离心铸造充型过程及凝固过程数学模型.并且依据此模型对TiAl基合金排气阀立式离心铸造过程温度场、流场及压力场进行了数值模拟.数值模拟结果表明,离心铸造的充型过程存在正向和反向两个充填过程,在入口处易出现卷气缺陷.凝固过程也存在正向和反向两个凝固顺序,在靠近先充填一侧易于形成偏轴线缩松缺陷.  相似文献   

10.
赵和明  潘新红  袁静 《连铸》2016,35(3):23-27
在钢的连铸过程中,钢水在结晶器内的凝固对铸坯的产量和质量均有很大影响,几乎所有的铸坯表面缺陷均形成于结晶器内。近年来,随着连铸拉速的增加及对铸坯表面质量要求的提高,有关结晶器冷却、传热对钢水的初始凝固及表面纵裂纹影响的研究成为连铸科学研究的重点。结晶器壁热流不均是纵裂纹产生的有利环境,保护渣控制传热为常用的措施。薄板坯浇铸时由于拉速高,为获得表面无缺陷铸坯,对保护渣控制传热的要求更高,同时也需协调保护渣的润滑功能。通过生产试验,研究比较3种碱度保护渣(CaO/SiO2分别为1.06、1.26和1.48)对薄板坯结晶器平均热流量的影响,发现与低碱度保护渣相比,使用高碱度保护渣时,结晶器热流量最低,有利于实现弱冷却,形成均匀凝固坯壳,在一定拉速条件下浇铸裂纹敏感钢种时有助于获得良好表面质量的铸坯。  相似文献   

11.
Zhang  Xu-bin  Chen  Wei  Zhang  Li-feng 《中国铸造》2017,14(5):416-420
Fluid flow, heat transfer and solidification of steel in the mold are so complex but crucial, determining the surface quality of the continuous casting slab. In the current study, a 2D numerical model was established by Fluent software to simulate the fluid flow, heat transfer and solidification of the steel in the mold. The VOF model and k-ε model were applied to simulate the flow field of the three phases(steel, slag and air), and solidification model was used to simulate the solidification process. The phenomena at the meniscus were also explored through interfacial tension between the liquid steel and slag as well as the mold oscillation. The model included a 20 mm thick mold to clarify the heat transfer and the temperature distribution of the mold. The simulation results show that the liquid steel flows as upper backflow and lower backflow in the mold, and that a small circulation forms at the meniscus. The liquid slag flows away from the corner at the meniscus or infiltrates into the gap between the mold and the shell with the mold oscillating at the negative strip stage or at the positive strip stage. The simulated pitch and the depth of oscillation marks approximate to the theoretical pitch and measured depth on the slab.  相似文献   

12.
The heat transfer and solidification microstructure evolution during continuous casting were experimentally studied in this work. A new approach to physically simulate the steel solidification behavior during continuous casting was developed. Six steel grades with different solidification mode were introduced to elucidate the carbon equivalent dependent mold heat flux, prior austenite grain size and secondary dendrite arm spacing. It is found that the non-steady mold heat fluxes in the experiment against time for all steel grades are comparative to that versus distance in practical continuous casting. Due to the occurrence of L→L+δ→δ+γ→γ transformation with the largest amount of volume contraction in hypo-peritectic steel, it shows the lowest mold heat flux among these six steel grades. It is also demonstrated from the solidification microstructure results that the prior austenite grain size and secondary dendrite arm spacing in the physical simulation are in good agreement with those in continuously cast strand. In addition, the steel with a higher temperature for the onset of δ→γ transformation reveals the larger prior austenite grains resulted from the higher grains growth rate in the post solidification process.  相似文献   

13.
NUMERICAL SIMULATION OF CASTING PROCESS   总被引:1,自引:0,他引:1  
1.IntroductionThemodellingofcasting,whichmeansmostlycomputernumericalsimulationofcast...lug,isaimedatanalysingpracticalfoundryproceduresundercomputervirtualenvironment,includingfillingprocess,solidificationprocessandstressdistributionofcasting.Withthehelpofthespecialtechnique,itbecomeseasytoevaluatetheinfluenceofmajorfactorsandpredictcastingdefects.Therefore,thepowerfultoolcanbeadoptedtooptimizefoundrytechnologyandreducecastingdefects.Foundrynumericalsimulationresearchbeginsin1962,andhasagreat…  相似文献   

14.
传热过程决定着板栅连铸结晶器能否连续稳定地生产出合格质量的连铸板栅,根据热力学第一定律和傅里叶定律(热传导定律)对板栅连铸结晶器的热量传递进行了研究。依据板栅连铸结晶器实际结构简化模型,分别建立了冷却油、端盖以及空气稳态复合传热模型,高温铅液、连铸动模外筒以及冷却油的稳态复合传热模型,连铸动模内部冷却油的放热计算模型,进而建立了板栅连铸结晶器传热动态平衡方程;为了指导生产实际,建立了运行过程操作函数。通过板栅连铸结晶器传热过程的分析研究,对提高板栅连铸的连续稳定生产并实现板栅连铸结晶器的全自动温度控制具有一定的指导意义。  相似文献   

15.
The present paper investigates the simulation analysis of simultaneous mold filling and solidification of ductile iron casting in a permanent mold by virtue of its thermal characteristics. Thermal analysis was performed to determine the solidification behavior and nature of alloy of the melt during its solidification. It revealed the variation in the nature of alloy due to the variations in eutectic freezing and carbon equivalent of the melt. The obtained thermal parameters from the thermal analysis were further used for the casting simulation of the melt. The simulation results show a progressive solidification behavior of the casting. There is a significant decrease in the overall heat transfer coefficient with time during the solidification process. The simulation results were further verified experimentally. The experimental results show porosity defects at the top section of the casting. Two distinct zones (center and outer) were observed on the produced samples based on the average graphite nodule counts and average graphite nodule size.  相似文献   

16.
连续铸造凝固过程数值模拟的研究进展   总被引:3,自引:0,他引:3  
介绍连续铸造凝固过程数值模拟的研究内容,包括连续铸造结晶器区的流场、温度场数值模拟和流场、温度场、浓度场三场耦合数值模拟以及新型连铸技术数值模拟的研究概况,提出连续铸造数值模拟的发展方向。  相似文献   

17.
蔡开科  吴元增 《金属学报》1983,19(1):115-122
本文介绍了连续铸锭凝固传热数学模型。从热平衡观点出发,导出了考虑小单元体内部和相邻小单元体之间热平衡的差分方程。并应用于连铸板坯结晶器凝固过程的模拟计算。讨论了操作工艺条件(如拉速、浇注温度、钢液流动、结晶器长度等)对结晶器内钢液凝固过程的影响。  相似文献   

18.
脉冲微孔喷射法(POEM)制备微米级球形粒子是典型的无容器传热和凝固过程,制备出的球形粒子具有粒径均一、圆整度高、热履历一致等特点,对流和辐射主导的传热机制对其制备工艺、凝固过程和组织控制至关重要。针对脉冲微孔喷射法微米级球形金属粒子的制备过程、冷却传热与凝固特征,本文建立了三维球坐标系下的粒子传热与凝固数值计算模型,考虑纯Cu粒子在无约束凝固过程中的对流和辐射换热特点,采用温度回升法处理纯金属的凝固潜热,计算了金属粒子在凝固过程不同阶段的温度变化与分布特点,考察了粒子凝固进程中的温度梯度、冷却速率、液固界面推进与凝固速度;模拟分析粒子的对流、辐射换热特征及贡献强度,探讨了不同制备工艺对粒子对流换热的影响,为POEM法微米级球形粒子制备工艺的优化和凝固过程调控提供参考。  相似文献   

19.
大型铸钢件凝固过程数值模拟   总被引:1,自引:1,他引:0  
铸钢件凝固收缩大,铸造工艺复杂,进行凝固过程计算机模拟十分必要.本文基于有限差分法建立铸钢件凝固过程传热计算的数学模型,开发铸钢件凝固过程三维温度场数值模拟分析软件.利用该软件计算了大齿轮毛坯铸钢件凝固过程的温度场,结果与实际情况吻合较好.  相似文献   

20.
Heat flow at the casting/mold interface was assessed and studied during solidification of Al-Cu-Si (LM 21) alloy in preheated cast iron molds of two different thicknesses, coated with graphite and alumina based dressings. The casting and the mold were instrumented with thermocouples connected to a computer controlled temperature data acquisition system. The thermal history at nodal locations in the mold and casting obtained during experimentation was used to estimate the heat flux by solving the one-dimensional inverse heat conduction problem. The cooling rate and solidification time were measured using the computer-aided cooling curve analysis data. The estimated heat flux transients showed a peak due to the formation of a stable solid shell, which has a higher thermal conductivity compared with the liquid metal in contact with the mold wall prior to the occurrence of the peak. The high values of heat flux transients obtained with thin molds were attributed to mold distortion due to thermal stresses. For thin molds, assumption of Newtonian heating yielded reliable interfacial heat transfer coefficients as compared with one-dimensional inverse modeling. The time of occurrence of peak heat flux increased with a decrease in the mold wall thickness and increase in the casting thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号