首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Indium tin oxide electrodes were modified with DNA, and the guanines in the immobilized nucleic acid were used as a substrate for electrocatalytic oxidation by Ru(bpy)3(3+) (bpy = 2,2'-bipyridine). Nucleic acids were deposited onto 12.6-mm2 electrodes from 9:1 DMF/water mixtures buffered with sodium acetate. The DNA appeared to denature in the presence of DMF, leading to adsorption of single-stranded DNA. The nucleic acid was not removed by vigorous washing or heating the electrodes in water, although incubation in phosphate buffer overnight liberated the adsorbed biomolecule. Acquisition of cyclic voltammograms or chronoamperomograms of Ru(bpy)3(2+) at the modified electrodes produced catalytic signals indicative of oxidation of the immobilized guanine by Ru(III). The electrocatalytic current was a linear function of the extent of modification with a slope of 0.5 microA/pmol of adsorbed guanine; integration of the current-time traces gave 2.2+/-0.4 electrons/guanine molecule. Use of long DNA strands therefore gave steep responses in terms of the quantity of adsorbed DNA strand. For example, electrodes modified with a 1497-bp PCR product from the HER-2 gene produced detectable catalytic currents when as little as 550 amol of strand was adsorbed, giving a sensitivity of 44 amol/mm2.  相似文献   

2.
Oligonucleotides containing the guanine nucleobase were adsorbed onto ITO electrodes from mixtures of DMF and acetate buffer. Chronocoulometry and chronoamperometry were performed on the modified electrodes in both phosphate buffer and buffer containing low concentrations of the inorganic complex Ru(bpy)3(2+) (bpy = 2,2' bipyridine), which catalyzes guanine oxidation. The charge and current evolution with and without the catalyst were compared to the charge and current evolution for electrodes that were treated with identical oligonucleotides that were substituted at every guanine with the electrochemically inert nucleobase hypoxanthine. Chronocoulometry over 2.5 s shows that roughly 2 electrons per guanine were transferred to the electrode in both the presence and absence of Ru(bpy)3(2+), although at a slower rate for the uncatalyzed process. Chronoamperograms measured over 250 ms can be fit to a double exponential decay, with the intensity of the fast component roughly 6-20 times greater than that of the slow component. First- and second-order rate constants for catalytic and direct guanine oxidation were determined from the fast component. The maximum catalytic enhancement for immobilized guanine was found to be i(cat)/i(d) = 4 at 25 microM Ru(bpy)3(2+). The second-order rate constant for the catalyzed reaction was 1.3 x 10(7) M(-1) s(-1), with an apparent dissociation constant of 8.8 microM. When compared to parallel studies in solution, a smaller value of the dissociation constant and a larger value of the second-order rate constant are observed, probably due to distortion of the immobilized DNA, an increase in the local negative charge due to the oxygen sites on the ITO surface, and redox cycling of the catalyst, which maintains the surface concentration of the active form.  相似文献   

3.
Genomic expansion of the triplet repeat sequences 5'-(CTG)n and 5'-(CGG)n leads to myotonic dystrophy and fragile X syndrome, respectively. Methods for determining the number of repeats in unprocessed nucleic acids would be useful in diagnosing diseases based on triplet repeat expansion. Electrochemical reactions based on the oxidation of guanine were expected to give larger signals per strand for expansion of repeats containing guanine. A novel PCR reaction was used to generate fragments containing 150, 230, 400, and 830 repeats of (CTG)n, which codes for myotonic dystrophy, and 130 and 600 repeats of (CGG)n, which codes for fragile X syndrome. These PCR fragments were immobilized to indium tin oxide electrodes, and oxidation of guanine in the fragments was realized using electrocatalysis by Ru(bpy)3(2+) (bpy = 2,2'-bipyridine). The catalytic currents due to oxidation of the immobilized guanines by Ru(bpy)3(3+) increased with the number of repeats and were a linear function of the repeat number when normalized to the number of strands immobilized. These results suggest a sensing strategy for repeat length based on the combination of the electrocatalytic strategy for determining the repeat length combined with existing methods for determining the number of strands.  相似文献   

4.
A dipolar Ru(II) complex, [(bpy)2Ru(bpbh)Ru(bpy)2](ClO4)4 {where bpbh = 1,6-bis-[2-(2-pyridyl) benzimidazoyl]hexane, bpy = 2,2'-bipyridine}, was synthesized and characterized. A multilayer film of at least 18 layers was successfully prepared by alternating adsorption of H4SiW12O40 and [Ru2(bpy)4(bpbh)](ClO4)4 by electrostatic layer-by-layer self-assembly. The multilayer films were studied by ultraviolet-visible and X-ray photoelectron spectroscopy, atomic force microscopy, and cyclic voltammetry.  相似文献   

5.
Antioxidant redox sensors based on DNA modified carbon screen-printed electrodes were developed. The carbon ink was doped with TiO2 nanoparticles, onto which double-strand DNA was adsorbed. A redox mediator, namely, tris-2,2'-bipyridine ruthenium(II) [Ru(bpy)3(2+)] was electrooxidized on the electrode surface to subsequently oxidize both the adsorbed ds-DNA and the antioxidants in solution. The resulting oxidation damage of the adsorbed ds-DNA was then detected by square wave voltammetry in a second solution containing only Ru(bpy)3Cl2 at a low concentration (microM). A kinetic model was developed to study the protecting role of antioxidants in aqueous solutions. The electrochemical sensor has been applied to evaluate the redox antioxidant capacity of different molecules.  相似文献   

6.
Heteroleptic ruthenium complexes cis-[Ru(H2dcbpy)(L)(NCS)2], where H2dcbpy is 4,4'-dicarboxylic acid-2,2'-bipyridine and L is 4-(4-(N,N-di-(p-hexyloxyphenyl)-amino)styryl)-4'-methyl-2,2'-bipyridine (Rut-A) or 4-(4'-(3,6-dihexyloxycarbazole-9-yl)-styryl)-4'-methyl-2,2'-bipyridine (Rut-B), have been synthesized and characterized by NMR, UV-Vis spectroscopy, and cyclic voltammogram. The effect of different electron donors on the properties of dye-sensitized solar cells has been studied. The power conversion efficiency of DSSC based on Rut-B is 6.1% while Rut-A delivered a lower efficiency of 4.52% under the same device fabrication and measuring conditions. The better photovoltaic performance of Rut-B is mainly associated with enhanced dye absorptivity and charge recombination suppression.  相似文献   

7.
The effects of metal ions on the electrochemiluminescence (ECL) properties of (bpy)2Ru(AZA-bpy) (bpy = 2,2'-bipyridine; AZA-bpy = 4-(N-aza-18-crown-6-methyl-2,2'-bipyridine) have been investigated. The electrochemistry, photophysics and ECL of Ru(bpy)3(2+) in the presence of Pb2+, Hg2+, Cu2+, and K+ are reported. The anodic oxidation of Ru(bpy)3(2+) produces ECL in the presence of tri-n-propylamine (TPrA) in 50:50 (v/v) CH3CN:H2O solution. Increases in ECL efficiency (photons generated per redox event) up to 20-fold that depend on both the concentration and nature of the metal ion have been observed, making this an interesting system for electrochemiluminescence metal ion sensing.  相似文献   

8.
9.
A sensor constructed by alternate layer-by-layer adsorption of PDDA cations and double-stranded (ds)-DNA on oxidized pyrolytic graphite electrodes was evaluated for detection of chemical damage to ds-DNA from known damage agent styrene oxide. Films made with PDDA ions of structure (PDDA/DNA)2 were approximately 6 nm thick and contained 0.23 microg of ds-DNA. Catalytic oxidation using 50 microM Ru(bpy)3(2+) (bpy = 2,2'-bipyridine) and square wave voltammetry (SWV) provided more sensitive detection of DNA damage than direct SWV oxidation. The catalytic peaks increased linearly with time during incubations with styrene oxide, but only minor changes were detected during incubation with nonreactive toluene. For best sensitivity, the outer layer of the film must be ds-DNA, and analysis should be done at low salt concentration. Studies of DNA and polynucleotides in solutions and films suggested that oxidation of guanine and chemically damaged adenine in partly unraveled, damaged DNA were the most likely contributors to the catalytic peak.  相似文献   

10.
Liposomes ( approximately 100-nm diameter) containing Ru(bpy)32+ (bpy = 2,2'-bipyridine) were prepared as an electrogenerated chemiluminescent (ECL) tag for a sandwich-type immunoassay of human C-reactive protein (CRP). Polyclonal human CRP antibodies were introduced onto liposomes and magnetic beads through biotin-streptavidin interaction. The antigen-antibody conjugates formed on addition of a CRP-containing sample were separated from unreacted species magnetically. Addition of 0.1 M tri-n-propylamine and 0.1 M phosphate buffer (pH 7.6) containing 0.1 M NaCl and 1% (v/v) Triton X-100 caused liberation of the Ru(bpy)32+ from the liposome. ECL obtained in this medium showed a detection limit of 100 ng/mL for human CRP with good linearity of ECL intensity versus antigen concentration over the range 100 ng/mL-10 microg/mL.  相似文献   

11.
Polythiophene layers were formed on self-assembled monolayers (SAMs)/indium tin oxide (ITO) using photoelectrochemical polymerization. The SAMs on ITO was prepared using Ru(4,4'-dicarboxylic acid-2,2'-bipyridine)2(NCS)2 and di(3-aminopropyl)viologen. The photoelectrochemically polymerized polythiophene layers on SAMs/ITO were characterized using UV-vis. absorption spectroscopy, atomic force microscopy, scanning electron microscopy, and cyclic voltammetry. The polymer layers have thickness of 360 nm, a dense surface morphology, optical gap of 2.38 eV, highest occupied molecular orbital of -5.2 eV and lowest unoccupied molecular orbital of -2.82 eV. In photoelectrochemical cells, the polythiophene on SAMs/ITO electrode showed a photocurrent of 5 microA/cm2.  相似文献   

12.
Giant liposomes containing Ru(bpy)(3)(2+) (bpy = 2,2'-bipyridine) were prepared as model systems for biomembranes and cells and studied by scanning electrochemical microscopy (SECM). Conical carbon fiber tips of submicrometer size were used to approach, image, and puncture individual liposomes immobilized on glass substrates. SECM images of the liposomes were obtained, and the leakage of Ru(bpy)(3)(2+) through the lipid membrane was probed. The tip was also pushed into liposomes and characteristic breakthrough transients, corresponding to liposomes with different compartmental configurations, were obtained. Voltammograms were obtained with the tip inside a single liposome after breaking through the membrane, and the influx of mediator and efflux of encapsulant after puncture could be observed.  相似文献   

13.
The effects of nonionic surfactant chain length on the properties of tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)3(2+) where bpy = 2,2'-bipyridine) electrochemiluminescence (ECL) have been investigated. The electrochemistry, photophysics, and ECL of Ru(bpy)3(2+) in the presence of a series of nonionic surfactants are reported (Triton X-100, 114, 165, 405, 305, and 705-70). These surfactants differ in the number of poly(ethylene oxide) units incorporated into the surfactant molecule. The anodic oxidation of Ru(bpy)3(2+) produces ECL in the presence of tri-n-propylamine (TPrA) in aqueous surfactant solution. Increases in ECL efficiency (> or = 5-fold) and TPrA oxidation current (> or = 2-fold) have been observed in surfactant media. Slight decreases in ECL intensity are observed as the chain length of the nonionic surfactant increases. The data supports adsorption of surfactant on the electrode surface, thus facilitating TPrA and Ru(bpy)3(2+) oxidation and leading to higher ECL efficiencies.  相似文献   

14.
Here, we describe a new approach for detecting redoxactive targets by electrochemical oxidation and reporting their presence by electrogenerated chemiluminescence (ECL) based on electrochemical oxidation of Ru(bpy)3(2+) (bpy = 2,2'-bipyridine) and tripropylamine (TPA). This new strategy, which complements our previous reports of using ECL to signal the presence of targets undergoing electrochemical reduction, takes advantage of many of the attractive attributes of microfluidic-based electrochemical cells. These attributes include close proximity of multiple flow channels and electrodes, ability to move reagents through channels under laminar flow conditions, and the capacity to precisely place device components relative to one another using photolithography. Specifically, the microfluidic electrochemical sensor described here consists of three channels. The analyte and ECL reporting cocktail flow through separate channels, but they share a common anode. The cathode resides in a channel containing a sacrificial reductant. In this configuration, the target analyte competes with Ru(bpy)3(2+) and TPA to provide electrons for the reductant. Accordingly, in this competitive assay approach, the presence of the analyte is signaled as a lowering of the ECL intensity. In this report, the device performance characteristics are reported, and the detection of both ferrocyanide and dopamine is demonstrated at micromolar concentrations.  相似文献   

15.
Meso-tetrapyridylporphyrins peripherally coordinated to four ruthenium complexes, such as [Ru(bpy)2Cl] and [Ru(5-ClPhen)2Cl] (bpy = 2,2'-bipyridine; Phen = 1,10-phenanthroline), provide a versatile class of molecular materials in which the complexes act as co-factors, inducing electronic effects and acting as electron-transfer relays and electron pools or sinks, depending upon their oxidation state. These cationic porphyrins can be assembled into thin films by conventional methods, or into organized layer-by-layer structures by combining with negatively charged tetrasulfonated porphyrins or phthalocyanines. Their electrocatalytic and photoelectrochemical properties have been successfully exploited in chemical sensors. Their usefulness in molecular logic gates are being demonstrated by using modified transparent conducting electrodes in miniaturized flow injection cells. In such designs, the chemical, electrochemical, and light inputs can be readily combined to perform the basic logic functions, such as AND, OR, and NOT, for molecular computing.  相似文献   

16.
A simple procedure to incorporate tris(2-2'-bipyridyl)ruthenium(II), [Ru(bpy)3]2+, into Nafion Langmuir-Schaefer (LS) films is described. Nafion LS films (tens of nanometers thick) were formed on quartz glass and indium tin oxide (ITO) directly from Nafion-[Ru(bpy)3]2+ Langmuir films assembled at the water-air interface. This procedure allowed the direct incorporation of [Ru(bpy)3]2+ into Nafion films without the need for subsequent loading. UV-vis spectroscopy confirmed the successful incorporation of [Ru(bpy)3]2+ within the LS films and showed that the amount of [Ru(bpy)3]2+ immobilized in this way scaled with film thickness. Voltammetric studies on ITO-modified electrodes confirmed the successful incorporation of [Ru(bpy)3]2+ and demonstrated that [Ru(bpy)3]2+ was retained within the ultrathin films over a long time scale. These electrodes were tested for the electrocatalytic reduction of tripropylamine. Significant catalysis was observed due to the rapid turnover of [Ru(bpy)3]2+/3+ between the electrode surface and outer boundary of the film, as a direct consequence of the ultrathin film dimensions. Concomitant electrochemiluminescence (ECL) was demonstrated highlighting the potential of this material for sensing applications.  相似文献   

17.
Efficient quenching of Ru(bpy)(3)(2+) (bpy = 2,2'-bipyridine) electrogenerated chemiluminescence has been observed in the presence of phenols, catechols, hydroquinones, and benzoquinones. In most instances, quenching is observed with 100-fold excess of quencher over Ru(bpy)(3)(2+), with complete quenching observed between 1000- and 2000-fold excess. The mechanism of quenching is believed to involve energy transfer from the excited-state luminophore to benzoquinone. In the case of phenols, catechols, and hydroquinones, quenching is believed to occur via a benzoquinone derivative formed at the electrode surface. Photoluminescence and UV-visible experiments coupled with bulk electrolysis support the formation of benzoquinone products upon electrochemical oxidation.  相似文献   

18.
The voltammetry and electrogenerated chemiluminescence (ECL) of tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)3 2+) ion-exchanged in Nafion and Nafion-silica composite materials have been investigated. The major goal of this work was to investigate and develop new materials and immobilization approaches for the fabrication of ECL-based sensors with improved reactivity and long-term stability. Nation-silica composite materials with varying contents of Nation (53-100 wt% relative to silica) were prepared via the two-step acid/base hydrolysis and condensation of tetramethoxysilane. The Nafion doped sols were spin cast on glassy carbon electrodes, dried, and then ion-exchanged with Ru(bpy)3 2+. The shapes of the cyclic voltammetric curves and the amount of Ru(bpy)3 2+ exchanged into the films strongly depends on the amount of Nafion incorporated into the hybrid sol. Nafion-silica films with a low content of Nafion ion-exchanged less Ru(bpy)3 2+ and exhibited tail-shaped voltammetry at 100 mV/s. The ECL of immobilized Ru(bpy)3 2+ in the presence of either tripropylamine or sodium oxalate in pH 5 acetate buffer was also strongly dependent on the amount of Nafion introduced into the composite with greater ECL observed for the Nafion-silica films relative to pure Nafion.  相似文献   

19.
The electrochemistry, UV-vis absorption, photoluminescence (PL), and coreactant electrogenerated chemiluminescence (ECL) of Ru(bpy)3(2+) (where bpy=2,2'-bipyridine) have been obtained in a series of hydroxylic solvents. The solvents included fluorinated and nonfluorinated alcohols and alcohol/water mixtures. Tri-n-propylamine was used as the oxidative-reductive ECL coreactant. Blue shifts of up to 30 nm in PL emission wavelength maximums are observed compared to a Ru(bpy)3(2+)/H2O standard due to interactions of the polar excited state (i.e., *Ru(bpy)3(2+)) with the solvent media. For example, Ru(bpy)3(2+) in water has an emission maximum of 599 nm while in the more polar hexafluoropropanol and trifluoroethanol it is 562 and 571 nm, respectively. ECL spectra are similar to PL spectra, indicating the same excited state is formed in both experiments. The difference between the electrochemically reversible oxidation (Ru(bpy)3(2+/3+)) and first reduction (Ru(bpy)2(2+/1+)) correlates well with the energy gap observed in the luminescence experiments. Although the ECL is linear in all solvents with [Ru(bpy)3(2+)] ranging from 100 to 0.1 nm, little correlation between the polarity of the solvent and the ECL efficiency (phiecl=number of photons per redox event) was observed. However, dramatic increases in phiecl ranging from 6- to 270-fold were seen in mixed alcohol/water solutions.  相似文献   

20.
Zu Y  Bard AJ 《Analytical chemistry》2000,72(14):3223-3232
We describe the electrogenerated chemiluminescence (ECL) processes of the Ru(bpy)3(2+) (bpy = 2,2'-bipyridyl)/ tripropylamine (TPrA) system at glassy carbon, platinum, and gold electrodes. The electrochemical behavior of TPrA on different electrode materials and its influence on the ECL process are demonstrated. At glassy carbon electrodes, the direct oxidation of TPrA began at approximately 0.6 V vs SCE and exhibited a broad irreversible anodic peak. Two ECL waves were observed, one in the potential region more negative than 1.0 V vs SCE and one at more positive potentials. The first ECL process apparently occurs without the electrogeneration of Ru(bpy)3(3+), in contrast to that of the second ECL wave. At Pt and Au electrodes, however, the formation of surface oxides significantly blocked the direct oxidation of TPrA. An ECL wave below 1.0 V did not appear at Pt and was very weak at gold. The ECL peaks at potentials of 1.1-1.2 V were also much weaker than those observed at the glassy carbon electrode. These results showed that the direct oxidation of TPrA played an important role in the ECL processes. Therefore, the enhancement of the TPrA oxidation current might lead to an increase in the ECL intensity. Small amounts of halide species were found to inhibit the growth of surface oxides on Pt and gold electrodes and led to an obvious increase of TPrA oxidation current. The anodic dissolution of gold in halide-containing solution was also important in activating the gold electrode surface. The electrochemical catalytic effect of bromide further promoted the oxidation of TPrA. A halide effect on ECL at Pt and Au electrodes was also evident. The most effective enhancement of ECL was observed at Au electrode in a bromide-containing solution. This effect was also found in an commercial flow-through instrument (IGEN) and provided a simple way to improve the detection sensitivity at low concentrations of Ru(bpy)3(2+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号