首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The near-field probes described in this paper are based on metallized non-contact atomic force microscope cantilevers made of silicon. For application in high-resolution near-field optical/infrared microscopy, we use aperture probes with the aperture being fabricated by focused ion beams. This technique allows us to create apertures of sub-wavelength dimensions with different geometries. In this paper we present the use of slit-shaped apertures which show a polarization-dependent transmission efficiency and a lateral resolution of < 100 nm at a wavelength of 1064 nm. As a test sample to characterize the near-field probes we investigated gold/palladium structures, deposited on an ultrathin chromium sublayer on a silicon wafer, in constant-height mode.  相似文献   

2.
The near-field probes described in this paper are based on metallized non-contact atomic force microscope cantilevers made of silicon. For application in high-resolution near-field optical/infrared microscopy, we use aperture probes with the aperture being fabricated by focused ion beams. This technique allows us to create apertures of sub-wavelength dimensions with different geometries. In this paper we present the use of slit-shaped apertures which show a polarization-dependent transmission efficiency and a lateral resolution of < 100 nm at a wavelength of 1064 nm. As a test sample to characterize the near-field probes we investigated gold/palladium structures, deposited on an ultrathin chromium sublayer on a silicon wafer, in constant-height mode.  相似文献   

3.
Scanning near-field optical microscopes (SNOM) using the tetrahedral-tip (T-tip) with scanning tunnelling microscopy (STM) distance control have been realized in transmission and reflection mode. Both set-ups used ordinary STM current-to-voltage converters allowing measurement of metallic samples. In the transmission mode, a resolution of 10 nm to 1 nm with regard to material contrast can be achieved on binary metal samples. Because of the great near-field optical potential of the T-tip with respect to the optical resolution, it is a challenging task to find out whether these results can be transferred to non-metallic sample systems as well. This paper reports on a newly designed SNOM/STM transmission mode set-up using the tetrahedral-tip. It implements a sensitive current-to-voltage converter to widen the field of measurable sample systems. Beyond this, mechanical and optical measuring conditions are substantially improved compared to previous set-ups. The new set-up provides a basis for the routine investigation of metal nanostructures and adsorbed organic monolayers at resolutions in the 10 nm range.  相似文献   

4.
We report our investigations into the fabrication of nanostructures of poly(p-phenylene vinylene) via direct scanning near-field lithography of its soluble precursor. Our technique is based on the spatially selective inhibition of the precursor solubility by exposure to the ultraviolet optical field present at the apex of commercially available, Au-coated near-field probes with aperture diameters between 40 and 80 nm (±5 nm). After development in methanol and thermal conversion under vacuum we obtain features with a minimum dimension of 160 nm. We analyse our results via tapping-mode atomic force microscopy, and find a clear phase contrast between the core and the centre of the lithographed features, corroborating the hypothesis that hard, fully insolubilised regions are surrounded by a gel-like phase, which we estimate of the order of 110–130 nm for the smallest features, by comparing our experiments with simulations carried out using a Bethe–Bouwkamp model. Use of such model also allows us to discuss the influence of probe size, tip–sample distance, and film thickness on the resolution of the lithographic process. We demonstrate the use of the technique for the direct writing of two-dimensional periodic structures with intentional defects and a periodicity relevant to applications in the visible range.  相似文献   

5.
The most difficult task in near-field scanning optical microscopy (NSOM) is to make a high quality subwavelength aperture probe. Recently, we have developed high definition NSOM probes by focused ion beam (FIB) milling. These probes have a higher brightness, better polarization characteristics, better aperture definition and a flatter end face than conventional NSOM probes. We have determined the quality of these probes in four independent ways: by FIB imaging and by shear-force microscopy (both providing geometrical information), by far-field optical measurements (yielding throughput and polarization characteristics), and ultimately by single molecule imaging in the near-field. In this paper, we report on a new method using shear-force microscopy to study the size of the aperture and the end face of the probe (with a roughness smaller than 1.5 nm). More importantly, we demonstrate the use of single molecules to measure the full three-dimensional optical near-field distribution of the probe with molecular spatial resolution. The single molecule images exhibit various intensity patterns, varying from circular and elliptical to double arc and ring structures, which depend on the orientation of the molecules with respect to the probe. The optical resolution in the measurements is not determined by the size of the aperture, but by the high optical field gradients at the rims of the aperture. With a 70 nm aperture probe, we obtain fluorescence field patterns with 45 nm FWHM. Clearly, this unprecedented near-field optical resolution constitutes an order of magnitude improvement over far-field methods like confocal microscopy.  相似文献   

6.
Excitons in a GaAs quantum wire were studied in high-resolution photoluminescence experiments performed at a temperature of about 10 K with a spatial resolution of 160 nm and a spectral resolution of 100 µeV. We report the observation of quasi-one-dimensional excitons which are delocalized over a length of up to several micrometres along the quantum wire. Such excitons give rise to a 10 meV broad luminescence band, representing a superposition of transitions between different delocalized states. In addition, we find a set of sharp luminescence peaks from excitons localized on a sub150 nm length scale. Theoretical calculations of exciton states in a disordered quasi-one-dimensional potential reproduce the experimental results.  相似文献   

7.
The morphology and fluorescence spectrum of poly{3-[2-(N-dodecylcarbamoyloxy)ethyl]thiophene-2,5-diyl} film were examined with spatial resolution of 100 nm using near-field fluorescence microspectroscopy. Fluorescence spectra observed at protruding domains were blue-shifted compared with flat areas, and further blue-shift was observed there more appreciably by long-time irradiation via a near-field scanning optical microscope probe. It is considered that the polymer chains at the protruding domains take disordered conformations, in which conjugated lengths are shorter and further disordering can be induced more easily by irradiation compared with those in the flat areas.  相似文献   

8.
A piezoresistive micro cantilever is applied to monitor the displacement of an optical fibre probe and to control tip–sample distance. The piezoresistive cantilever was originally made for a self-sensitive atomic force microscopy (AFM) probe and has dimensions of 400 µm length, 50 µm width and 5 µm thickness with a resistive strain sensor at the bottom of the cantilever. We attach the piezoresistive cantilever tip to the upper side of a vibrating bent optical fibre probe and monitor the resistance change amplitude of the strain sensor caused by the optical fibre displacement. By using this resistance change to control the tip–sample distance, the two-cantilever system successfully provides topographic and near-field optical images of standard samples in a scanning near-field optical microscopy (SNOM)/AFM system. A resonant characteristic of the two-cantilever system is also simulated using a mechanical model, and the results of simulation correspond to the experimental results of resonance characteristics.  相似文献   

9.
Using cross-hatched, patterned semiconductor surfaces and round 20-nm-thick gold pads on semiconductor wafers, we investigate the imaging characteristics of a reflection near-field optical microscope with an uncoated fibre tip for different polarization configurations and light wavelengths. It is shown that cross-polarized detection allows one to effectively suppress far-field components in the detected signal and to realize imaging of optical contrast on the sub-wavelength scale. The sensitivity window of our microscope, i.e. the scale on which near-field optical images represent mainly optical contrast, is found to be ≈100 nm for light wavelengths in the visible region. We demonstrate imaging of near-field components of a dipole field and purely dielectric contrast (related to well-width fluctuations in a semiconductor quantum well) with a spatial resolution of ≈100 nm. The results obtained show that such a near-field technique can be used for polarization-sensitive imaging with reasonably high spatial resolution and suggest a number of applications for this technique.  相似文献   

10.
The inexpensive fabrication of high-quality probes for near-field optical applications is still unsolved although several methods for integrated fabrication have been proposed in the past. A further drawback is the intensity loss of the transmitted light in the 'cut-off' region near the aperture in tapered optical fibres typically used as near-field probes. As a remedy for these limitations we suggest here a new wafer-scale semibatch microfabrication process for transparent photoplastic probes. The process starts with the fabrication of a pyramidal mould in silicon by using the anisotropic etchant potassium hydroxide. This results in an inverted pyramid limited by < 111 > silicon crystal planes having an angle of ∼ 54°. The surface including the mould is covered by a ∼ 1.5 nm thick organic monolayer of dodecyltrichlorosilane (DTS) and a 100-nm thick evaporated aluminium film. Two layers of photoplastic material are then spin-coated (thereby conformal filling the mould) and structured by lithography to form a cup for the optical fibre microassembly. The photoplastic probes are finally lifted off mechanically from the mould with the aluminium coating. Focused ion beam milling has been used to subsequently form apertures with diameters in the order of 80 nm. The advantage of our method is that the light to the aperture area can be directly coupled into the probe by using existing fibre-based NSOM set-ups, without the need for far-field alignment, which is typically necessary for cantilevered probes. We have evidence that the aluminium layer is considerably smoother compared to the 'grainy' layers typically evaporated on free-standing probes. The optical throughput efficiency was measured to be about 10−4. This new NSOM probe was directly bonded to a tuning fork sensor for the shear force control and the topography of a polymer sample was successfully obtained.  相似文献   

11.
Several approaches are described with the aim of producing near-field optical probes with improved properties. Focused ion beam milling allows the fabrication of small apertures in a controlled fashion, resulting in probes with excellent polarization properties and increased transmission. Microfabrication processes are described that allow the production of apertures of 30–50 nm, facilitating the mass-fabrication of apertured tip structures that can be used in a combined force/near-field optical microscope. Finally, possible future developments are outlined.  相似文献   

12.
We demonstrate fluorescence imaging of single molecules, by near-field scanning optical microscopy (NSOM), using the illumination-collection mode of operation, with an aperture probe. Fluorescence images of single dye molecules were obtained with a spatial resolution of 15 nm, which is smaller than the diameter of the aperture (20 nm) of the probe employed. Such super-resolution may be attributable to non-radiative energy transfer from the molecules to the coated metal of the probe since the resolution obtained in the case of conventional NSOM is limited to 30–50 nm due to penetration of light into the metal.  相似文献   

13.
基于虹吸原理和动态大锥角化学腐蚀方法进行改进融合,成功制备出理想的高光传输效率和高分辨力的光纤探针。针尖尺寸在80nm~300nm,锥角可以控制在32~°45°内。并通过SPSS(statistical product and serv ice so lutions)数据分析软件从数理统计方面客观分析了该方法与静态化学腐蚀方法的显著差异。  相似文献   

14.
We fabricated a standard sample for a near-field optical microscope using scanning probe lithography. The sample contains a wedged pattern, which allows the measurement of various sizes within one image. The optical resolution of our near-field optical microscope has been evaluated as 40 nm, which was obtained by measuring the narrowest separable gap width of the wedged pattern. Thus a standard sample containing the wedged pattern enables clear evaluation of the resolution.  相似文献   

15.
We have developed fibre probes suitable for 325 nm UV light excitation and a photoluminescence near-field scanning optical microscope (NSOM) and demonstrated the photoluminescence imaging of phosphor BaMgAl10O17:Eu2+ (BAM) particles. The probe was fabricated by a two-step-etching method that we developed. The probe had a large taper angle at the top of the probe and a small taper angle at the root. The NSOM image was different from the topographical structure but roughly reflected the corresponding features of the particles. The inhomogeneity of the photoluminescence intensity between BAM particles was observed in the NSOM image. The photoluminescence intensity with various bandpass filters showed differences between the individual particles, which means that they have different spectra.  相似文献   

16.
Hillenbrand R 《Ultramicroscopy》2004,100(3-4):421-427
Diffraction limits the spatial resolution in classical microscopy or the dimensions of optical circuits to about half the illumination wavelength. Scanning near-field microscopy can overcome this limitation by exploiting the evanescent near fields existing close to any illuminated object. We use a scattering-type near-field optical microscope (s-SNOM) that uses the illuminated metal tip of an atomic force microscope (AFM) to act as scattering near-field probe. The presented images are direct evidence that the s-SNOM enables optical imaging at a spatial resolution on a 10 nm scale, independent of the wavelength used (λ=633 nm and 10 μm). Operating the microscope at specific mid-infrared frequencies we found a tip-induced phonon-polariton resonance on flat polar crystals such as SiC and Si3N4. Being a spectral fingerprint of any polar material such phonon-enhanced near-field interaction has enormous applicability in nondestructive, material-specific infrared microscopy at nanoscale resolution. The potential of s-SNOM to study eigenfields of surface polaritons in nanostructures opens the door to the development of phonon photonics—a proposed infrared nanotechnology that uses localized or propagating surface phonon polaritons for probing, manipulating and guiding infrared light in nanoscale devices, analogous to plasmon photonics.  相似文献   

17.
Quasi-two-colour femtosecond pump and probe spectroscopy and near-field scanning optical microscopy are combined to study the carrier dynamics in single semiconductor nanostructures. In temporally, spectrally and spatially resolved measurements with a time resolution of 200 fs and a spatial resolution of 200 nm, the non-linear change in reflectivity of a single quantum wire is mapped in real space and time. The experiments show that carrier relaxation into a single quantum wire occurs on a 100 fs time scale at room temperature. Evidence is given for a transient unipolar electron transport along the wire axis on a picosecond time and 100 nm length scale.  相似文献   

18.
The optical destruction thresholds of conventionally etched and tube-etched near-field optical probes were measured. One of the main advantages of tube-etched tips is their smooth glass surface after taper formation. Presumably for this reason, a destruction limit of over 120 μJ was obtained, almost twice as large as that of the rougher, conventionally etched fibre probes. The use of additional adhesion layers (Ti, Cr, Co and Ni) between the glass surface and the aluminium coating produced, especially for tube-etched tips, a significant increase in the optical destruction threshold. With increasingly thin metal coatings, the use of a protection coating that prevents corrosion during aging is recommended. An additional increase in optical stability was achieved by applying mixed-metal coatings: alternating thin titanium and thick aluminium layers yielded fibre probes with superior properties that achieved average optical destruction thresholds of > 270 μJ. This is an increase in stability of > 400% compared with conventionally fabricated near-field optical tips.  相似文献   

19.
We present high-resolution aperture probes based on non-contact silicon atomic force microscopy (AFM) cantilevers for simultaneous AFM and near-infrared scanning near-field optical microscopy (SNOM). For use in near-field optical microscopy, conventional AFM cantilevers are modified by covering their tip side with an opaque aluminium layer. To fabricate an aperture, this metal layer is opened at the end of the polyhedral probe using focused ion beams (FIB). Here we show that apertures of less than 50 nm can be obtained using this technique, which actually yield a resolution of about 50 nm, corresponding to λ/20 at the wavelength used. To exclude artefacts induced by distance control, we work in constant-height mode. Our attention is particularly focused on the distance dependence of resolution and to the influence of slight cantilever bending on the optical images when scanning at such low scan heights, where first small attractive forces exerted on the cantilever become detectable.  相似文献   

20.
Hydrogen chemistry in thin films and biological systems is one of the most difficult experimental problems in today's science and technology. We successfully tested a novel solution, based on the spectroscopic version of scanning near-field optical microscopy (SNOM). The tunable infrared radiation of the Vanderbilt free electron laser enabled us to reveal clearly hydrogen-decorated grain boundaries on nominally hydrogen-free diamond films. The images were obtained by SNOM detection of reflected 3.5 µm photons, corresponding to the C–H stretch absorption, and reached a lateral resolution of 0.2 µm, well below the λ/2 (λ= wavelength) limit of classical microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号