首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
High velocity oxygen fuel (HVOF)-sprayed cermet coatings are extensively used to combat erosion-corrosion in naval applications and in slurry environments. HVOF spray parameters such as oxygen flow rate, fuel flow rate, powder feed rate, carrier gas flow rate, and spray distance have significant influence on coating characteristics like adhesion bond strength and shear strength. This paper presents the use of statistical techniques in particular response surface methodology (RSM), analysis of variance, and regression analysis to develop empirical relationships to predict adhesion bond strength and lap shear bond strength of HVOF-sprayed WC-CrC-Ni coatings. The developed empirical relationships can be effectively used to predict adhesion bond strength and lap shear bond strength of HVOF-sprayed WC-CrC-Ni coatings at 95% confidence level. Response graphs and contour plots were constructed to identify the optimum HVOF spray parameters to attain maximum bond strength in WC-CrC-Ni coatings.  相似文献   

2.
Response surface methodology for optimization of plasma spraying   总被引:2,自引:0,他引:2  
Response surface methodology was used to describe empirical relationships among three principal independent variables that control the plasma spraying process. The torch-substrate distance, the amount of hydrogen in the primary gas (argon), and the powder feed rate were studied. A number of dependent variables (responses) were determined, including the deposited layer roughness, density, hardness, chemical composition, and erosion rate. The technique facilitates mapping of the responses within a limited experimental region without much prior knowledge of the process mechanisms. The maps allow process optimization and selection of operating conditions to achieve the desired specifications of the plasma sprayed coating. To illustrate the approach, a simple system of WC-12%Co was deposited on a mild steel substrate. The resulting response surfaces were used to define optimum, or “robust,” deposition parameters.  相似文献   

3.
Porous Ceramic Coating for Transpiration Cooling of Gas Turbine Blade   总被引:3,自引:0,他引:3  
A transpiration cooling system for gas turbine applications has significant benefit for reducing the amount of cooling air and increasing cooling efficiency. In this paper, the porous ceramic coating, which can infiltrate cooling gas, is developed with plasma spraying process, and the properties of the porous coating material such as permeability of cooling gas, thermal conductivity, and adhesion strength are examined. The mixture of 8 wt.% yttria-stabilized zirconia and polyester powders was employed as the coating material, in order to deposit the porous ceramic coating onto Ni-based super alloy substrate. It was shown that the porous ceramic coating has superior permeability for cooling gas. The adhesion strength of the porous coating was low only 20% compared with the thermal barrier coating utilized in current gas turbine blades. Simulation test of hot gas flow around the gas turbine blade verified remarkable reduction of the coating surface temperature by the transpiration cooling mechanism. It was concluded that the transpiration cooling system for the gas turbine could be achieved using the porous ceramic coating developed in this study.  相似文献   

4.
This research aims to develop advanced thermal plasma spraying technology for the next-generation thermal barrier coatings (TBCs) with a high power hybrid plasma spraying system. By using thermal plasma physical vapor deposition (TP-PVD), various functional structured yttria-stabilized zirconia (YSZ) coatings were deposited. Parameters, such as powder feeding rate, hydrogen gas concentration, and total mass flow rate of the plasma gas, were optimized, and their influences on the evaporation of YSZ powder were investigated. Ultrafast deposition of a thick coating was achieved at a rate of over 150 μm/min. The deposited porous coating has a low thermal conductivity of 0.7W/mK and the dense coating with interlaced t′ domains possesses a high nanohardness of 27.85 GPa and a high reflectance. These characteristics show that the TP-PVD technique is a very valuable process for manufacturing novel TBCs.  相似文献   

5.
采用超音速等离子转移弧喷涂铝涂层,通过响应曲面法中的 Box-Behnken 中心组合试验设计了三因素三水平的工艺优化试验,建立了主气流量、工作电流和喷涂距离与涂层孔隙率之间的数学模型。 对最优工艺参数条件下制备的铝涂层,利用 SEM、XRD 对涂层的微观形貌和组织成分进行表征;利用 HMV-2000 型维氏硬度计和 MTS 809 万能拉伸试验机对涂层的显微硬度和结合强度进行测试分析。 结果表明:随着主气流量增大、工作电流减小或者主气流量减小、 工作电流增大,孔隙率均呈减小趋势,得到的最优喷涂工艺为:主气流量:100 L/ min,工作电流:200 A,喷涂距离: 100 mm,丝与喷嘴的距离:10 mm,送丝速度:6 m/ min。 通过最优工艺制备的铝涂层,涂层致密,孔隙率为 2. 3%;涂层与基体的结合强度较高为 24. 4 MPa,显微硬度为 44. 5 HV0. 1 。  相似文献   

6.
段忠清  张宝霞  王泽华 《表面技术》2008,37(4):39-41,53
等离子喷涂陶瓷涂层与基体的结合强度往往较小,限制了其实际应用,为了提高结合强度,用正交试验方法研究了等离子喷涂工艺的4个主要参数(喷涂距离、电流、主气流量和辅气流量)对Cr2 03 -8% TiO2涂层结合强度的影响,确定了优化工艺并进行了验证试验,比较了工艺优化前后涂层的结合强度、孔隙率和显微硬度。结果表明:影响涂层结合强度的因素主次顺序是喷涂距离、电流、辅气流量、主气流量,工艺优化后能显著提高Cr2 03一8 % TiO2涂层的性能,优化工艺喷涂的Cr2 03 -8% Ti02涂层结合强度达到29. 2MPa,孔隙率为3.80%,显微硬度为2 528HV。  相似文献   

7.
等离子喷涂YSZ热障涂层的热腐蚀行为研究   总被引:2,自引:1,他引:1  
任鑫 《表面技术》2009,38(6):27-28,59
为了研究YSZ热障涂层在热腐蚀环境下的服役情况,采用等离子喷涂工艺在K38高温合金基体上分别制备了Y2O3稳定的ZrO3(YSZ)热障涂层和MgO稳定的ZrO2热障涂层(MSZ),利用热重分析、X-射线衍射和带能谱的扫描电镜等手段,研究分析了这2种涂层在850℃含氯硫酸盐膜下的热腐蚀行为。结果表明:MSZ涂层在850℃热腐蚀时发生了相变,引起陶瓷外层开裂和剥落,影响了涂层的抗高温性能和使用寿命;而YSZ涂层在850℃腐蚀后没有相变发生,表现出了比MSZ涂层更佳的抗热腐蚀性能。  相似文献   

8.
等离子喷涂AlSi-ployester封严涂层工艺优化研究   总被引:1,自引:0,他引:1  
采用AlSi-ployester粉末和PARXAIR-3710等离子喷涂系统制备封严涂层.为使AlSi-ployester等离子喷涂涂层获得优良的涂层性能,选择涂层结合强度为判据,通过正交试验对AlSi-ployester等离子喷涂工艺进行了优化.利用扫描电镜,Axio lmager.A lm金相图像分析系统等手段对涂层形貌和孔隙率进行分析,同时对涂层的硬度、抗热震性能进行了测试.确定优化后的工艺参数为:电弧电流790A.主气流量62.7 L/min,辅气流量5 L/min,喷涂距离100mm.结果表明,电弧电流、主气流量、辅气流量、喷涂距离对AlSi-ployester涂层结合强度具有不同的影响,在优化的喷涂工艺参数条件下,AlSi-ployester涂层结合强度可达6.9MPa,具有较好的硬度和热震性能,可为今后等离子喷涂系统工艺参数的选定提供参考.  相似文献   

9.
Plasma spraying of yttria-stabilized zirconia was carried out under chamber pressures ranging from low (30 kPa) to high pressure (300 kPa) to investigate pressure effects on the plasma jet and to clarify the potential of high-pressure plasma spraying (HPPS) as a high performance coating tool. Plasma flame length and velocity of the particles were measured in situ, and the coating characteristics including its microstructure, density, and hardness were studied. A condensed plasma flame under high pressure facilitated sufficient melting of zirconia particles, resulting in high deposition efficiency and a dense coating with improved hardness, in spite of reduced particle velocity. High-pressure plasma spraying was found to be suitable for thermal spraying of high-melting-point materials such as zirconia.  相似文献   

10.
The present study concerns a detailed investigation of the characteristics and oxidation resistance property of a duplex and compositionally graded thermal barrier coating on Inconel 718. The duplex coating consists of a CoNiCrAlY bond coat layer sprayed on to sand-blasted Inconel 718 substrate (by high velocity oxy-fuel spraying) followed by deposition of a yttria-stabilized zirconia (YSZ) top coat by plasma spraying. The compositionally graded coating consists of several layers deposited by plasma spraying of pre-mixed CoNiCrAlY and YSZ powders in the weight ratios of 70:30, 50:50, 30:70, and 0:100 varying from the bond coat to the top surface, respectively. A detailed investigation of the microstructure, composition, and phases in the coating and its non-isothermal oxidation behavior from room temperature to 1250°C was performed. Oxidation proceeds by three stages in the as-received Inconel 718 and the compositionally graded coating, but by two stages in the duplex coating with a maximum activation energy for oxidation in the compositionally graded coating at high temperature (stage III). The kinetics and mechanism of oxidation were established.  相似文献   

11.
周浩楠  王丹  邓卫斌 《表面技术》2016,45(3):103-108
目的采用电弧喷涂方法在环氧树脂和ABS塑料表面喷涂铝涂层,研究涂层结合强度的影响因素。方法第一组试验是塑料表面喷砂后,喷涂铝涂层;第二组是塑料表面喷砂后,涂覆一层高强度环氧树脂结构胶,再喷涂铝涂层。选择喷涂气体压力、喷涂电流和喷涂距离三因素进行正交试验,采用粘结拉伸法测试结合强度,并用照相法测量铝液和环氧树脂塑料、Q235钢的接触角。结果本试验条件下,二种塑料电弧喷涂铝涂层结合强度的影响因素主次顺序为:空气压力喷涂电流喷涂距离。最优方案是:喷涂气体压力为0.7 MPa,喷涂电流为220 A,喷涂距离为160 mm。未涂覆高强度环氧树脂结构胶的涂层,结合强度最大不超过3 MPa;涂覆高强度环氧树脂结构胶的涂层,结合强度达到近20 MPa。铝液和Q235钢的接触角是45°,和环氧树脂塑料的接触角是135°。结论环氧树脂和ABS塑料表面电弧喷涂铝涂层的结合强度低的主要原因是铝液和它们之间的润湿性差。涂覆高强度环氧树脂结构胶后,喷涂工艺参数对涂层的结合强度影响不明显,结合强度受控于环氧树脂结构胶的粘接作用,使涂层的结合强度显著提高。  相似文献   

12.
在纳米ZrO2中加入适量低熔点无机烧蚀材料SiO2和Cu,利用大气等离子喷(APS)技术,在TC4基体上制备出一种复合防热涂层.应用等离子火炬对涂层进行模拟烧蚀防热试验,运用X射线衍射(XRD)、扫描电镜(SEM)、电子探针(EPMA)等测试方法对粉末及涂层烧蚀前后的物相组成、显微结构和成分分布进行了观察和确定.研究结果表明,复合涂层表层烧蚀防热作用明显,内部仅出现液化现象,总体上涂层防热性能仍优于单一PYSZ涂层.涂层平均结合强度为47.7MPa.  相似文献   

13.
In-flight particle characteristics (surface temperature and velocity upon impact) are among the most important parameters which influence the coating microstructures and properties in atmospheric plasma spraying (APS) process. The purpose of this paper is to study hydrogen fraction used as secondary plasma forming gas on the in-flight particle surface temperature and by extension on the coating microstructures of atmospheric plasma-sprayed 8 mol% yttria stabilized zirconia electrolyte coatings implementing in particular artificial neural networks (ANN). Then, the predicted in-flight particle characteristics were on the one hand compared to experimental values and on the other hand correlated to some of the coating structural attributes (porosity and gas specific permeability). The predicted results were in good accordance with the experimental data. Results showed that the H2 flow rate had obvious influence on particle temperature and had almost no significant effect on particle velocity. Increasing the particle temperatures induced dense coating microstructure and improved the gas-tightness performance.  相似文献   

14.
An agglomerated Cr2O3/wt.%TiO2 powder has been fabricated by the spray drying process under different parameters. The spray-dried powder has well-agglomerated particles of spherical shape. In the conditions of the high slurry feed rate and low binder concentration in the slurry, the powder has large cavities inside some particles and ruggedness over their surface. The optimum plasma spray feed rate has been found by examining the spraying behavior of the powder and melted state of particles. The plasma spray coating has been performed under different process variables such as spraying distance and plasma power. These parameters strongly affect the characteristics of the coated layer: microstructure, hardness, and bond strength.  相似文献   

15.
Growing demands on thermal barrier coatings (TBCs) for gas turbines regarding their temperature and cyclic capabilities, corrosion resistance, and erosion performance have instigated the development of new materials and coating systems. Different pyrochlores, perovskites, doped yttria-stabilized zirconia, and hexaaluminates have been identified as promising candidates. However, processing these novel TBC materials by plasma spraying is often challenging. During the deposition process, stoichiometric changes, formation of undesired secondary phases or non-optimum amorphous contents, as well as detrimental microstructural effects can occur in particular. This article describes these difficulties and the development of process-related solutions by employing diagnostic tools.  相似文献   

16.
基于孔隙率的Cr2O3涂层工艺优化及回归分析   总被引:1,自引:1,他引:0  
孔隙率是评价Cr2O3涂层质量的重要指标之一。根据Box-Behnken二阶响应曲面法设计了3因素3水平的回归分析试验,采用大气等离子喷涂技术在TC4钛合金表面制备了Cr2O3涂层,以不同工艺条件下的涂层孔隙率作为响应值,建立了喷涂电流、等离子气体和喷距影响因子与响应输出之间的数学模型,讨论了3种影响因子的显著性及交互作用影响,得到涂层孔隙率的连续变量响应曲面和等高曲线。模型可以用于大气等离子喷涂Cr2O3涂层的工艺优化和性能预测,最小孔隙率的预测参数是电流I=500A,氩气流量QAr=40L/min和喷距d=80mm,能获得的最小孔隙率为1.5%。  相似文献   

17.
Hybrid plasma spraying combined with yttrium-aluminum-garnet laser irradiation was studied to obtain optimum zirconia coatings for thermal barrier use. Zirconia coatings of approximately 150 μm thickness were formed on NiCrAlY bond coated steel substrates both by means of conventional plasma spraying and hybrid plasma spraying under a variety of conditions. Post-laser irradiation was also conducted on the plasma as-sprayed coating. The microstructure of each coating was studied and, for some representative coatings, thermal barrier properties were evaluated by hot erosion and hot oxidation tests. With hybrid spraying, performed under optimum conditions, it was found that a microstructure with appropriate partial densification and without connected porosity was formed and that cracks, which are generally produced in the post-laser irradiation treatment, were completely inhibited. In addition, hybrid spraying formed a smooth coating surface. These microstructural changes resulted in improved coating properties with regard to hardness, high temperature erosion resistance, and oxidation resistance. This paper originally appeared in Thermal Spray: Meeting the Challenges of the 21st Century; Proceedings of the 15th International Thermal Spray Conference, C. Coddet, Ed., ASM International, Materials Park, OH, 1998. This proceedings paper has been extensively reviewed according to the editorial policy of the Journal of Thermal Spray Technology.  相似文献   

18.
To testify to the advantage of large ceramic powder spraying, numerical simulations and experimental studies on the behavior of large yttria-stabilized zirconia (YSZ) powder in a high-power hybrid plasma spraying process have been carried out. Numeric predictions and experimental results showed that, with the high radio frequency (RF) input power of 100 kW, the most refractory YSZ powder with particle sizes as large as 88 μm could be fully melted and well-flattened splats could be formed. A large degree of flattening (ξ) of 4.7 has been achieved. The improved adhesive strength between the large splat and the substrate was confirmed based on the measurement of the crack density inside of the splats. A thick YSZ coating >300 μm was successfully deposited on a large CoNiCrAlY-coated Inconel substrate (50×50×4 mm in size). The ultradense microstructure without clear boundaries between the splats and the clean and crack-free interface between the top-coat and the bond-coat also indicate the good adhesion. These results showed that highpower hybrid plasma spraying of large ceramic powder is a very promising process for deposition of highquality coatings, especially in the application of thermal barrier coatings (TBCs).  相似文献   

19.
将响应曲面法应用于大气等离子喷涂Cr2O3涂层的工艺研究中,对喷涂电流、等离子气体成分和喷距等因素的显著性及交互作用的影响程度进行了分析,给出了涂层沉积厚度的拟合数学模型。研究表明,响应曲面法弥补了传统单变量和全因子优化实验的不足,可以运用到热喷涂领域的实验设计和数据分析中。  相似文献   

20.
目的 通过优化等离子喷涂工艺参数,提高铝合金表面等离子喷涂Al2O3-3%TiO2复合陶瓷涂层的结合强度和涂层表截面硬度。方法 用正交试验法,对影响喷涂涂层结合强度和硬度的4个关键喷涂参数进行优化,分别得到喷涂粘结底层Ni-5Al和工作表层Al2O3-3%TiO2的最佳优化参数。结果 通过正交试验确定影响Ni-5Al涂层综合指标的因素由主到次是喷涂电流、喷涂距离、辅气流量、主气流量,最优水平数为2、3、2、1;影响Al2O3-3%TiO2涂层综合指标的因素由主到次是喷距、辅气流量、电流、主气流量,最优水平数为2、3、2、1。Ni-5Al涂层的最佳喷涂工艺参数为:喷涂距离120 mm,喷涂电流520 A,主气流量42 L/min,辅气流量7.5 L/min。Al2O3-3%TiO2复合涂层最佳喷涂工艺参数为:喷涂距离90 mm,喷涂电流530 A,主气流量46 L/min,辅气流量7.8 L/min。最佳工艺下制备的Ni-5Al底层与基体的结合强度为25.2 MPa,Al2O3-3%TiO2复合涂层与Ni-5Al底层的结合强度为17.8 MPa,且其截面硬度在1000HV0.5以上。结论 对喷涂工艺参数进行优化可以得到质量高且稳定的Al2O3-3%TiO2复合喷涂涂层,与非最佳工艺参数喷涂涂层相比,各指标均有较大提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号