共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
基于行为的机器人部队队形控制方案 总被引:3,自引:0,他引:3
提出了一种适用于实时动态环境下机器人力队的基于行为的分布式实时队形控制算法。研究了这种基于行为的方案在遇到大体积障碍物时行为,仿真过程表明该法既能使机器人动态分组、各自规划,又能机器人部队作为一个整体维持队形。该算法可使机器人形成和保持任意队形,同时集成了避障和导航的能力。最后指出了算法在控制机器人团队转向或避障运动时的问题出现的原因以及改进方法。 相似文献
4.
基于行为的机器人自适应队形控制 总被引:1,自引:0,他引:1
针对多机器人在未知复杂环境下的队形控制问题,将leader-follower法结合到基于行为法中,提出了机器人在复杂环境下采取跟踪链的方式穿越障碍,而后再重新组队,使机器人适应环境的能力增强,避免了机器人在复杂环境下掉队的现象.在避障活动障碍时,依据障碍运动趋势有预见的主动避开,使控制行为既简单又有效,仿真结果表明该队... 相似文献
5.
6.
多智能体协作完成特定任务是多智能体领域的一个基本问题 .本文结合多智能体理论和基于队形向量的队形控制算法 ,提出了一种改进的基于队形向量的控制机器人部队形成任意形状的队形的分布式队形控制算法 DFC.仿真的实验结果证明 ,该算法比现有算法功能完备 ,控制简单 相似文献
7.
8.
10.
11.
针对多机器人在编队行进过程中的行为选择问题进行了分析,提出一种实现多移动机器人编队的行为选择机制。通过计算机仿真和实验研究,结果表明该控制策略能很好的实现多机器人快速编队,并在编队过程中实现运动状态的平滑变化,提高了整个系统性能。 相似文献
12.
In the field of formation control, researchers generally control multiple robots in only one team, and little research focuses on multi-team formation control. In this paper, we propose an architecture, called Virtual Operator MultiAgent System (VOMAS), to perform formation control for multiple teams of mobile robots with the capabilities and advantages of scalability and autonomy. VOMAS is a hybrid architecture with two main agents. The virtual operator agent handles high level missions and team control, and the robot agent deals with low level formation control. The virtual operator uses four basic services including join, remove, split, and merge requests to perform multi-team control. A new robot can be easily added to a team by cloning a new virtual operator to control it. The robot agent uses a simple formation representation method to show formation to a large number of robots, and it uses the concept of potential field and behavior-based control to perform kinematic control to keep formation both in holonomic and nonholonomic mobile robots. In addition, we also test the stability, robustness, and uncertainty in the simulation.
This research was supported by the National Science Council under grant NSC 91-2213-E-194-003. 相似文献
13.
针对移动机器人编队形成与队形保持问题,提出了一种适用于任意初始位置条件下的迭代学习编队控制算法。采用领航-跟随型编队法,仅利用领航者的运动轨迹和期望的编队队形推导出跟随者的参考航迹,引入迭代学习控制(Iterative Learning Control,ILC)方法,设计跟随者的控制律,使跟随者随着每次迭代调节自身的线速度和角速度,与领航者一起以期望编队队形工作;引入对初始位置的学习,即同时进行编队队形的学习和编队初始位置的学习。解决了任意初始位置的多移动机器人形成并保持期望编队队形的问题。并在理论上分析了控制算法的可行性,仿真结果验证了控制算法的有效性。 相似文献
14.
15.
To get the best features of both deliberative and reactive controllers, present mobile robot control architectures are designed to accommodate both types of controller. However, these architectures are still very rigidly structured thus deliberative modules are always assigned to the same role as a high-level planner or sequencer while low-level reactive modules are still the ones directly interacting with the robot environment. Furthermore, within these architectures communication and interface between modules are if not strongly established, they are very complex thus making them unsuitable for simple robotic systems. Our idea in this paper is to present a control architecture that is flexible in the sense that it can easily integrate both reactive and deliberative modules but not necessarily restricting the role of each type of controller. Communication between modules is through simple arbitration schemes while interface is by connecting a common communication line between modules and simple read and/or write access of data objects. On top of these features, the proposed control architecture is scalable and exhibits graceful degradation when some of the modules fail, similar to the present mobile robot architectures. Our idea has enabled our four-legged robot to walk autonomously in a structured uneven terrain. 相似文献
16.
17.
多移动机器人的队形控制 总被引:1,自引:0,他引:1
针对步行机器人建模困难和传感信息有限的条件下对其进行的队形控制研究。通过建立机器人的队形位置信息知识库,制定有优先级的组队参考机器人选择规则,结合有限的传感交互信息,提出了基于主从知识联想的平行四边形法来确定机器人的运动向量,使跟随机器人在虚构的平行四边形中分析出其下一步的偏转角和速度,并在偏转角和速度的分析中考虑了时延和适当的控制周期。在机器人队形控制过程中的避障问题则采用模糊控制理论,依据人为经验制定的模糊避障控制规则使机器人灵活的避开障碍,仿真实验证明了算法的有效性。 相似文献
18.
The paper proposes a multiple models based control methodology for the solution of the tracking problem for mobile robots. The proposed method utilizes multiple models of the robot for its identification in an adaptive and learning control framework. Radial Basis Function Networks (RBFNs) are considered for the multiple models in order to exploit the non-linear approximation capabilities of the nets for modeling the kinematic behaviour of the vehicle and for reducing unmodelled tracking errors contributions. The training of the nets and the control performance analysis have been done in a real experimental setup. The experimental results are satisfactory in terms of tracking errors and computational efforts and show the improvement in the tracking performance when the proposed methodology is used for tracking tasks in dynamical uncertain environments. 相似文献
19.
一种多移动机器人避障的改进算法 总被引:1,自引:0,他引:1
为了使多机器人在有障碍物的环境中可靠地运行,针对多机器人的避障问题,融合沿墙行为的避障模式,构造出一类具有自适应特性l-ψ闭环控制律下的多机器人避障算法,以作为基于行为的控制策略的有益补充。仿真结果表明,该算法可以成功地解决机器人因融合参数不当而形成的避障"死锁"问题,使多机器人在有障碍物的环境下,在障碍物区能够顺利地通过障碍物,在离开障碍物后,快速恢复至稳定。 相似文献