首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This research aimed to study physicochemical properties and in vitro digestibility of flours and starches from taro cultivated in different regions of Thailand, that is, Kanchanaburi (KB), Chiang Mai (CM), Phetchaburi (PB) and Saraburi (SB). Taro starches were extracted from taro flours using either water or alkaline extraction. The taro flours had significantly (P ≤ 0.05) larger particle size, higher pasting and gelatinisation temperatures, and resistant starch content but lower total starch content, whiteness (L* value), paste viscosities and clarity than their corresponding extracted starches. All the taro starches exhibited polygonal and irregular granules and gave A-type X-ray diffraction pattern. The alkaline-extracted taro starches had significantly (P ≤ 0.05) higher extraction yield, total starch content, L* value, pasting and gelatinisation temperatures, and paste clarity but lower granular size, amylose content, resistant starch content, paste viscosities and relative crystallinity than their water-extracted counterparts.  相似文献   

3.
马铃薯抗性淀粉理化性质的研究   总被引:1,自引:0,他引:1  
以马铃薯原淀粉为对照,研究了纤维素酶-压热法制备的马铃薯抗性淀粉的理化性质。结果表明,马铃薯原淀粉颗粒呈椭球形,表面光滑;而抗性淀粉的颗粒状结构消失,形成了连续的致密结构,表面不再光滑。红外光谱分析表明,抗性淀粉分子中未出现新的基团,只较原淀粉形成了更多的氢键。马铃薯原淀粉的分子晶型为A型,整体结晶度为22.82%;抗性淀粉的分子晶型为B型,整体结晶度为29.64%。马铃薯抗性淀粉的溶解度、透明度远远低于原淀粉;膨润度、持水性优于原淀粉。抗性淀粉的沉降速度较快,沉降性比原淀粉强。原淀粉糊化温度为65.8 ℃,峰值黏度可达到10 770 mPa·s;而抗性淀粉其糊化温度高于95 ℃。  相似文献   

4.
分析比较怀山药淀粉和压热法制备的怀山药抗性淀粉的理化性质及消化特性。结果表明:怀山药淀粉颗粒表面光滑,呈不规则且大小不一的椭球形、三角形等形态,属于C型淀粉;抗性淀粉颗粒特征消失,呈现表面疏松的片层状结构。2种淀粉化学结构相似,抗性淀粉没有形成新的基团。与原淀粉相比,抗性淀粉分子量分布更加集中。抗性淀粉的糊化峰值温度高于原淀粉的,因此其热稳定性更高。抗性淀粉的透明度低于原淀粉的。水浴温度低于75℃时,抗性淀粉的持水性大于原淀粉的,而当水浴温度高于原淀粉糊化温度时,原淀粉的持水性明显高于抗性淀粉的;体外模拟人体消化试验表明,抗性淀粉比原淀粉更耐消化。  相似文献   

5.
Fourteen hull‐less barley cultivars, collected from four major cultivated areas in China, were employed to investigate the structural and physicochemical properties of their starches in this study. Relatively wide variations in physicochemical properties of the starches were observed. Amylose content ranged from 23.1% to 30.0%, swelling power and water solubility index ranged from 12.8 to 19.9 g g?1 and 12.7% to 23.7% respectively. Peak viscosity was from 170 to 346 Rapid Visco Unit (RVU), peak temperature (Tp) of starch gelatinisation was from 55.6 to 61.8 °C and enthalpy of starch retrogradation ranged from 0.3 to 3.1 J g?1. Weight‐based chain‐length proportions of fa, fb1, fb2 and fb3 in amylopectins ranged from 21.65% to 24.95%, 44.48% to 49.44%, 15.56% to 17.19% and 9.83% to 16.66% respectively. Correlation analyses showed that amylose content was inversely related to pasting parameters and enthalpy of gelatinisation. Pasting properties and amylopectin structures were the most important parameters to differentiate starch properties among different hull‐less barley cultivars in this study. This work will be useful for exploring applications of Chinese hull‐less barley starches in food and non‐food industries.  相似文献   

6.
根据膨胀度、糊化度及差示扫描量热仪(DSC)测得热力学参数,综合分析甘薯交联抗性淀粉和原淀粉热力学性质,并采用Jenkins提出In–vitro模型测定淀粉体外消化性。结果表明:在同一温度下,甘薯交联抗性淀粉膨胀度和糊化度均较原淀粉低,且交联剂用量越高,淀粉膨胀度和糊化度越小;DSC测试结果显示,甘薯交联抗性淀粉相转变温度To、Tp、Tc随交联剂用量增加而升高,Tc–To和△H均比原淀粉低。In–vitro消化模拟实验表明,甘薯交联抗性淀粉消化性比原淀粉低,并随交联剂含量增加,消化产物量减少,消化速度降低。  相似文献   

7.
To investigate the possibility of improving the quality of rice rich in resistant starch through operation of nonstarch polysaccharides, the high dietary fibre (7.24%) mutant cw and its wild‐type R7954 were selected to study the physiochemical characteristics of starch before and after removal of nonstarch polysaccharides. Results showed that hydrolysed or partially hydrolysed nonstarch polysaccharides in cw decreased the resistant starch content significantly, from 15.23% to 10.8%. Nonstarch polysaccharides had significant influences on the gelatinisation temperature, RVA parameters of R7954, but no significant influences on that of cw. For cw, removal of cellulose increased swelling power and adhesiveness, decreased the hardness significantly, from 0.3 to 0.23 N, while the resistant starch content was still as high as 13.72% and showed no significant difference from the wild type. This suggests that the influences of nonstarch polysaccharides on starch properties depend both on the type of rice and the nonstarch polysaccharides. Operation on nonstarch polysaccharides for obtaining rice with lower glycemic index is feasible, but operation on nonstarch polysaccharides may also be an alternative way of improving the palatability for rice high in resistant starch.  相似文献   

8.
抗性淀粉直链淀粉含量测定及消化性研究   总被引:2,自引:1,他引:2  
以蜡质玉米淀粉为原料,经过糊化后使用普鲁兰酶脱支,产生更多的短直链淀粉重新结晶来制备抗性淀粉。通过碘吸光度法测定,直链淀粉含量高的样品的抗性淀粉含量不一定高,但直链淀粉含量低的样品不容易产生高含量抗性淀粉。在In-Vitro消化模型中,和原淀粉相比,所有的抗性淀粉样品消化产物的量、还原糖释放率和平均消化速率都减少或降低,并且抗性淀粉含量越高,减少或降低得越多。  相似文献   

9.
为探究多酚对莲藕淀粉和玉米淀粉性质的影响,将莲藕淀粉、玉米淀粉分别与藕节汁、儿茶素以及没食子儿茶素混合制备了淀粉多酚复合物。通过X-射线衍射仪(XRD)、傅里叶红外光谱(FT-IR)、快速黏度分析仪(RVA)和差示扫描量热仪(DSC)对复合物的物理化学性质进行了表征,同时使用体外消化模型评估了消化率。结果显示,莲藕淀粉和玉米淀粉对儿茶素的吸附量为4.22 mg/g和3.79 mg/g。多酚降低了淀粉的整体黏度,其中,儿茶素对玉米淀粉的峰值黏度影响最为显著,降低了14.61 %,且显著提高玉米淀粉颗粒的稳定性。FT-IR、XRD结果表明,在两种淀粉的老化过程中,藕节汁多酚可以显著降低其结晶度,并抑制两种淀粉的回生。莲藕淀粉和玉米淀粉的水解率均低于其淀粉-多酚复合物的水解率,其中儿茶素使莲藕淀粉的抗性淀粉含量增加了5.6%,藕节汁多酚使玉米淀粉的抗性淀粉含量增加了7.7%。  相似文献   

10.
Unripe banana, edible canna and taro flours, which have been reported to contain significant amounts of fibre, were investigated for their physicochemical properties, resistant starch (RS) content and in vitro starch digestibility, and compared with commercial high‐fibre‐modified starches from corn and tapioca. Differential scanning calorimetry showed a single endothermic peak located around 70–83 °C for the samples except the modified starches, which exhibited no transition enthalpy. The samples showed different pasting behaviours in the Rapid Visco‐Analyser (RVA) ranging from full to restricted swelling. The RS content varied from 1–26 g per 100 g dry sample, and the estimated glycaemic indices (GIs) of the samples were from 67% to 99%. Generally, samples with high RS were low in GI values. The starches produced acceptable rice noodles but with reduced rate of starch digestion and GI. The effects of the unripe banana, edible canna and taro flours on starch digestibility were either comparable or better than the commercial modified starches. These flours can substitute commercial modified starches to lower GIs of noodles and identical foods.  相似文献   

11.
Resistant starch (RS) is that fraction of starch, which escapes enzymic hydrolysis in the small intestine and passes in the colon. Effect of storage time (12 and 24 h) and temperature (4 °C and 25 °C) was studied on RS content of the pressure‐cooked cereal and legume grains/seeds and their flours. RS content was observed to increase in the stored cereals and legumes, with more enhanced increase in the flour samples stored at refrigeration temperature for longer duration (41.4% in wheat flour and 85.4% in pea flour). Significant positive correlations were observed between RS content (4 °C, 24 h) and amylose (y = 0.388 × –5.948, r = 0.840, P ≤ 0.05, n = 7) as well as between % increase in insoluble dietary fibre content (4 °0C, 24 h) and amylose (y = 2.257 × –27.724, r = 0.971, P ≤ 0.05, n = 7). Reduced in vitro starch digestibility of the cooked/stored samples (4 °C, 24 h) was observed when compared to freshly cooked samples.  相似文献   

12.
Resistant starch can be used to reduce the availability of carbohydrates in baked products. In this study, the effect of type 4 resistant wheat starch (RS4) on wheat flour dough and breads was evaluated. Wheat flour was substituted by RS4 at 10%, 20% and 30% w/w (RS10, RS20 and RS30, respectively). Rheological and thermal behaviours of dough were evaluated. Besides, bread quality, starch digestibility and bread staling were analysed. All substituted dough exhibited viscoelastic behaviour but lower elastic and viscous moduli. Regarding to bread quality, specific volume and crumb texture were negatively affected in samples with RS4. However, all samples were technologically acceptable. During storage, crumb hardening was observed in breads without and with RS4 but amylopectin retrogradation was not particularly affected. The in vitro digestibility of bread with RS showed a lower release of reducing sugars and a lower estimated glycaemic index, suggesting a healthier profile for these breads.  相似文献   

13.
研究马铃薯抗性淀粉的结构特征与体外消化特性。方法 以马铃薯淀粉为对照, 采用红外光谱仪、XRD、DSC等手段研究了马铃薯抗性淀粉的碘吸收特性、颗粒形貌、晶型结构形态、热特性等。通过模拟体外消化评价了抗性淀粉的消化性能。结果 马铃薯淀粉和抗性淀粉碘吸收曲线最大吸收峰在580~600 nm,马铃薯抗性淀粉分子量分布更集中。马铃薯淀粉为B型结晶结构, 马铃薯抗性淀粉为C型结晶结构。SEM观察显示:马铃薯淀粉分子颗粒完整, 表面光滑, 整体呈不规则的椭圆形; 马铃薯抗性淀粉分子为不规则多面体, 分子表面粗糙、有凹陷, 且有少量的层状起伏; 红外光谱分析表明抗性淀粉未出现新的基团。DSC检测发现:马铃薯抗性淀粉的热稳定性更高; 马铃薯淀粉和抗性淀粉酶解前2 h内消化速率迅速增加, 酶解2 h后速率减慢, 消化速率逐渐趋于平缓, 血糖指数分别为70.42、40.50。结论 说明马铃薯抗性淀粉具有较致密的结晶结构和酶抗性, 抗消化性显著。  相似文献   

14.
15.
High and low amylose Thai rice flours (KC and ML, respectively) were used in this work, to increase the resistant starch (RS) content in the flour. Pullulanase debranching followed by heat‐moisture treatment (DHMT) altered the pasting properties, which increased the shear stability to the flours. The gelatinisation temperature determined by DSC was increased and the more retrogradation occurred in treated flour compared to the native flour. The SEM observation showed that the treatment did not change the morphology of the granules in both flours. The slowly digestible starch (SDS) content in DHMT KC was higher than in the native KC. The RS content in the treated ML flour was increased to 18.31% from 11.59% in native flour. These concluded that the treatment affected the digestibility, while maintaining the granular structure.  相似文献   

16.
Lotus and kudzu starches have been used as functional foods in East Asia for thousands of years. The objective of this work is to investigate the starches’ basic physicochemical properties. The amylose content was the highest (30.61%) in lotus starch. The average particle size (diameters) was 50.27, 24.08 and 38.97 μm for lotus, kudzu and corn starches, respectively. Lotus starch exhibited a B‐type X‐ray diffraction pattern and kudzu starch exhibited a C‐type pattern. Kudzu starch was characterised by a maximum viscosity immediately followed by a sharp decrease in viscosity, while the lotus starch was characterised by a plateau when the maximum viscosity was reached.  相似文献   

17.
淮山药淀粉及其抗性淀粉理化性质的比较   总被引:4,自引:1,他引:3  
分析比较了淮山药淀粉及压热法制备的淮山药抗性淀粉的理化性质。结果表明:淮山药淀粉颗粒呈圆形或卵圆形,属C型淀粉;抗性淀粉颗粒为不规则形、多角形,尺寸较原淀粉有所减小。2种淀粉的化学结构相似,与原淀粉相比,抗性淀粉没有生成新的基团。抗性淀粉的溶解度、膨润度、透明度均低于原淀粉,而持水性、乳化性优于原淀粉;糊化温度较原淀粉高,热稳定性和冷稳定性更好。原淀粉糊和抗性淀粉糊均为屈服-假塑性流体,原淀粉糊易剪切稀化,抗性淀粉糊耐机械力的性能好。  相似文献   

18.
以紫山药淀粉为研究原料,采用不同方法分别制备压热、酶解-压热及双酶纯化抗性淀粉,分析比较了紫山药淀粉与其抗性淀粉的理化性质。试验结果表明:紫山药淀粉颗粒呈圆形或椭圆形且表面光滑;抗性淀粉颗粒破碎且呈不规则型。4种淀粉的化学结构相似,与原淀粉相比,抗性淀粉没有生成新的基团。抗性淀粉样品的凝沉速度随直链淀粉含量的增加而加快,冻融稳定性则降低;碘吸收曲线向支链淀粉吸收波长方向偏移。流变学分析表明与原淀粉相比抗性淀粉表观黏度均增大,剪切结构恢复力与抗性淀粉含量成反比。  相似文献   

19.
Starches separated from four kidney bean cultivars were modified by acetylation to reduce retrogradation and increase gel stability and compared with respective native starches (data of native starch reported by Wani et al., 2010 ). Acetylation was carried out by treating starches with 0.04 and 0.08 g of acetic anhydride per gram of starch dry weight basis (dwb) at 25 °C and pH between 8.0 and 8.5. The extent of acetylation increased proportionally with the concentration of acetic anhydride used. The pasting curves of 10.7% starch determined by Rapid Visco Analyzer at 160 rpm showed that acetylation decreased the setback viscosity values by 0.64–34.58% and pasting temperature by 4.4–9.2 °C when compared with the native starch. Differential scanning calorimetry observations also revealed significant (P ≤ 0.05) decrease in gelatinisation temperature of acetylated starches than the corresponding native starches. Hardness of starch gels varied between 14.3 and 44.0 g, which was significantly (P ≤ 0.05) lower than the corresponding native starch gels.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号