首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Toxicity assays: a way for evaluating AOPs efficiency   总被引:1,自引:0,他引:1  
The technical feasibility and performance of photocatalytic degradation of aqueous methomyl (50 mg/L) have been studied at pilot scale in two well-defined systems of special interest because natural-solar UV light can be used: heterogeneous photocatalysis with titanium dioxide and homogeneous photocatalysis by photo-Fenton. The pilot plant is made up of compound parabolic collectors specially designed for solar photocatalytic applications. Experimental conditions allowed pesticide disappearance, degree of mineralisation and toxicity achieved in the two photocatalytic systems to be compared. Total disappearance of methomyl is attained by photo-Fenton in 60 min and by TiO2 in 100 min. Hundred percent of nitrogen and sulphur are recovered as ammonium and sulphate. By contrast, complete mineralisation of total organic carbon (TOC) is not achieved even after quite a long time (more than 300 min). Three different bioassays (Vibrio fischeri, Daphnia magna and a Microalga) have been used for testing the progress of toxicity during treatment. All remained toxic down to very low-pesticide concentrations and in some bioassays were still toxic after total disappearance of the pesticide. Only if treatment is maintained throughout enough mineralisation (i.e. TOC disappearance), the toxicity is reduced to below the threshold (EC50%).  相似文献   

2.
Methyl-tert-butyl ether (MTBE), a fuel oxygenate that is added to gasoline, commonly contaminates aquatic systems, many of which are already contaminated with pesticides. The toxic effects (EC(50) value) of several pure pesticides (Diuron, Linuron, Dichlofluanid, Sea nine, Irgarol and tributyltin (TBT)) were measured and compared with the EC(50) value of the pesticide mixed with MTBE, using the Vibrio fischeri and Daphnia magna acute toxicity assays. The interaction between chemicals was evaluated in terms of the effects of mixing on the EC(50) value (i.e. the concentration (mg/L) of a compound or mixture that is required to produce a 50% change in a toxic response parameter) and the time required to generate the toxic response. Presence of MTBE enhanced the EC(50) value of several pesticides (Diuron, Dichlofluanid, TBT and Linuron) and/or the toxic response manifested more rapidly than with pure pesticides. Toxicity enhancements were quite substantial in many cases. For example, the presence of MTBE increased the toxicity of Diuron by more than 50% when tested with the V. fischeri assay (5, 15 and 30 min exposure). Also, the toxic response manifested itself within 5 min whereas without the MTBE the same response arose in 30 min. Presence of MTBE increased the toxicity of Dichlofluanid by 30% when measured with the D. magna assay. Toxicities of only two pesticides (Sea nine and Irgarol) were not raised by the presence of MTBE.  相似文献   

3.
Environmental Risk Assessment of chemical products and effluents within EC countries require the use of cost effective standardized toxicity tests that in most cases are restricted to acute responses to high doses. Thus, subtle ecological effects are underestimated. Here we propose a short-term one day Daphnia magna feeding inhibition test as a cost effective and ecological relevant sublethal bioassay. The sensitivity and reliability of the proposed bioassay was tested in the laboratory against standardized bacteria, algae growth, D. magna and fish acute toxicity test by using 16 chemical mixture x water type combinations that included four different water types fortified with four complex chemical mixtures. Water types included ASTM hard water and three selected effluents diluted 1/10 in water to mimic worse field situations that many overexploited arid river ecosystems suffer during summer months when effluents are discharged into them with little dilution. The results obtained denoted a greater sensitivity of the proposed feeding bioassay in 51 out of 65 tests performed with an average sensitivity 50 fold greater than that of the standardized tests. The greater differences were obtained for mixtures that included narcotic chemicals and the lowest differences for those containing pesticides. Furthermore, feeding responses to the studied contaminant mixtures behaved differently to increasing TOC content than those based on bioluminescent bacteria and algae. Increasing TOC coming from sewage treated effluents decrease toxicity to the latter bioassays but increased those of D. magna feeding bioassays. These results empathize the need to include additional bioassays to monitor more accurately and realistically the toxicity of effluents or surface waters dominated by effluent discharges, a quite common situation in America and Mediterranean arid regions.  相似文献   

4.
In order to identify the cause of toxicity in sediments and suspended matter, a large number of samples with different degrees of contamination was taken at various locations in The Netherlands. Standard acute bioassays were carried out with the bacterium Vibrio fischeri, the rotifer Brachionus calyciflorus and the anostracan Thamnocephalus platyurus. Chronic standard tests were performed using the water flea Daphnia magna and larvae of the midge Chironomus riparius. Some novel bioassays were performed as well. Most toxic effects observed in standard bioassays with sediments from polluted sediments (class 3 and 4 on a scale of 0-4 according to the Dutch criteria) could be partly explained by toxic concentrations of known persistent priority pollutants, mainly heavy metals and occasionally polycyclic aromatic hydrocarbons. In some of the samples, ammonia toxicity was a confounding factor during testing. Suspended matter from the Meuse river at Eijsden, which may be considered as 'new' sediment (pollution class 2), was moderately to highly toxic in almost all bioassays. This could have been associated with a combination of heavy metals, PAHs and ammonia. At two locations from the Lake IJssel area with no apparent persistent pollution, moderate and strong effects were nonetheless observed in invertebrate tests. This might have been due to agricultural run-off of pesticides, which are not routinely measured in sediments. A few effects on V. fischeri in canals and a small stream could not be explained with standard chemical analysis, but seemed associated with the outlets of sewage water treatment plants and industrial effluents. Additional chemical analysis of pore water samples from five selected sediments yielded more identified substances such as phtalates, decanes, cosanes and fragrances, but it was estimated that their contribution to the effects observed on V. fischeri, D. magna and C. riparius was negligible.  相似文献   

5.
In this study, water containing the pharmaceutical compound sulfamethoxazole (SMT) was subjected to the various treatments of different oxidation processes involving ozonation, and photolysis and catalysis under different experimental conditions. Removal rates of SMT and total organic carbon (TOC), from experiments of simple UVA radiation, ozonation (O(3)), catalytic ozonation (O(3)/TiO(2)), ozone photolysis (O(3)/UVA), photocatalytic oxidation (O(2)/TiO(2)/UVA) and photocatalytic ozonation (O(3)/UVA/TiO(2)), have been compared. Photocatalytic ozonation leads to the highest SMT removal rate (pH 7 in buffered systems, complete removal is achieved in less than 5min) and total organic carbon (in unbuffered systems, with initial pH=4, 93% TOC removal is reached). Also, lowest ozone consumption per TOC removed and toxicity was achieved with the O(3)/UVA/TiO(2) process. Direct ozone and free radical reactions were found to be the principal mechanisms for SMT and TOC removal, respectively. In photocatalytic ozonation, with buffered (pH 7) aqueous solutions phosphates (buffering salts) and accumulation of bicarbonate scavengers inhibit the reactions completely on the TiO(2) surface. As a consequence, TOC removal diminishes. In all cases, hydrogen peroxide plays a key role in TOC mineralization. According to the results obtained in this work the use of photocatalytic ozonation is recommended to achieve a high mineralization degree of water containing SMT type compounds.  相似文献   

6.
Treatment of textile dyehouse wastewater by TiO2 photocatalysis   总被引:6,自引:0,他引:6  
The oxidative degradation of an actual textile dyehouse wastewater was investigated by means of photocatalysis in the presence of TiO2. The UV-A-induced photocatalytic oxidation over TiO2 suspensions was capable of decolorizing the effluent completely, as well as reducing chemical oxygen demand (COD) sufficiently (COD reduction generally varied between about 40% and 90% depending on the operating conditions) after 4 h of treatment. Two crystalline forms of TiO2, viz. anatase and rutile, were tested for their photocatalytic activity and anatase was found to be more active than rutile. The extent of photocatalytic degradation was found to increase with increasing TiO2 concentration up to 0.5 g/L TiO2, above which degradation remained practically constant, reaching a plateau. Furthermore, textile effluent degradation was enhanced at acidic conditions (i.e. pH = 3) and in the presence of hydrogen peroxide. To assess catalyst activity on repeated use, experiments were performed where the catalyst was recovered and reused; after three successive uses, TiO2 had sufficiently retained its photocatalytic activity. Finally, the luminescent marine bacteria Vibrio fischeri was used to assess the acute ecotoxicity of samples prior to and after the photocatalytic treatment and it was found that ecotoxicity was fully eliminated following photocatalytic oxidation.  相似文献   

7.
Wet oxidation of a 100 ppm aqueous solution of o-chlorophenol (o-CP) was performed in a lab-scale batch reactor using 3% Ru/TiO(2) catalyst at 373 and 413 K, and a partial oxygen pressure of 0.1 MPa. The experiments were conducted by varying the initial pH values of o-CP solution from pH 6.3 to 9.8 and 11.8. From the results, it was revealed that the catalytic decomposition of o-CP occurred most effectively at 413 K and at the initial pH of 9.8. Complete decomposition and dechlorination of o-CP were almost achieved within 1h, and about 85% of TOC was removed in 3.0 h. On the other hand, the catalytic wet oxidation of o-CP at a higher pH value of 11.8 was not effective in the removal of TOC. The incomplete removal of TOC at the initial pH of 11.8 is likely attributed to a low pK(a) of carboxylic acids formed during the wet oxidation of o-CP.  相似文献   

8.
Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions   总被引:7,自引:0,他引:7  
Adams LK  Lyon DY  Alvarez PJ 《Water research》2006,40(19):3527-3532
The potential eco-toxicity of nanosized titanium dioxide (TiO(2)), silicon dioxide (SiO(2)), and zinc oxide (ZnO) water suspensions was investigated using Gram-positive Bacillus subtilis and Gram-negative Escherichia coli as test organisms. These three photosensitive nanomaterials were harmful to varying degrees, with antibacterial activity increasing with particle concentration. Antibacterial activity generally increased from SiO(2) to TiO(2) to ZnO, and B. subtilis was most susceptible to their effects. Advertised nanoparticle size did not correspond to true particle size. Apparently, aggregation produced similarly sized particles that had similar antibacterial activity at a given concentration. The presence of light was a significant factor under most conditions tested, presumably due to its role in promoting generation of reactive oxygen species (ROS). However, bacterial growth inhibition was also observed under dark conditions, indicating that undetermined mechanisms additional to photocatalytic ROS production were responsible for toxicity. These results highlight the need for caution during the use and disposal of such manufactured nanomaterials to prevent unintended environmental impacts, as well as the importance of further research on the mechanisms and factors that increase toxicity to enhance risk management.  相似文献   

9.
In order to meet environmental quality criteria, grey water was treated in four different ways: 1) aerobic 2) anaerobic + aerobic 3) aerobic + activated carbon 4) aerobic + ozone. Since each treatment has its own specific advantages and disadvantages, the aim of this study was to compare the ecotoxicity of differently treated grey water using Chironomus riparius (96 h test) and Daphnia magna (48 h and 21d test) as test organisms. Grey water exhibited acute toxicity to both test organisms. The aerobic and combined anaerobic + aerobic treatment eliminated mortality in the acute tests, but growth of C. riparius was still affected by these two effluents. Post-treatment by ozone and activated carbon completely removed the acute toxicity from grey water. In the chronic toxicity test the combined anaerobic + aerobic treatment strongly affected D. magna population growth rate (47%), while the aerobic treatment had a small (9%) but significant effect. Hence, aerobic treatment is the best option for biological treatment of grey water, removing most of the toxic effects of grey water. If advanced treatment is required, the treatment with either ozone or GAC were shown to be very effective in complete removal of toxicity from grey water.  相似文献   

10.
Phyu YL  St J Warne M  Lim RP 《Water research》2005,39(12):2738-2746
The toxicity and bioavailability of molinate to Vibrio fischeri (Microtox((R))) were determined in both laboratory and river water in the absence and presence of sediment after 0, 24, 48, 72 and 96-h exposure. The bioavailability of molinate, expressed as 5min EC50s (bioluminescence) and their fiducial limits calculated using initial measured concentrations, to V. fischeri in laboratory water in the absence and presence of sediment ranged from 1.8 (1.7-2.1) to 3.6 (3.5-3.7) mgL(-1) and 1.3 (1.2-1.4) to 4.2 (3.5-4.5) mgL(-1), respectively. The corresponding values in river water and river water plus sediment were 1.7 (1.6-1.8) to 3.8 (3.6-4.1) and 1.3 (1.3-1.4) to 4.6 (4.2-4.9) mgL(-1), respectively. River water did not significantly (P>0.05) reduce the bioavailability of molinate to V. fischeri compared to that of laboratory water. However, the presence of sediment significantly (P<0.05) reduced the bioavailability of molinate to V. fischeri in both waters. The exposure time also significantly (P<0.05) reduced the bioavailability of molinate to V. fischeri in both waters in the presence and absence of sediment. The type of water did not significantly (P>0.05) affect the loss of molinate during the 96-h exposure period. However, the presence of sediment significantly (P<0.01) increased the loss of molinate from the test solutions, probably by binding to the sediment particles. Exposure period and concentration levels significantly (P<0.05) affected the loss of the herbicides over the 96h.  相似文献   

11.
I. Michael 《Water research》2010,44(18):5450-5462
Two different technical approaches based on advanced oxidation processes (AOPs), solar Fenton homogeneous photocatalysis (hv/Fe2+/H2O2) and heterogeneous photocatalysis with titanium dioxide (TiO2) suspensions were studied for the chemical degradation of the fluoroquinolone ofloxacin in secondary treated effluents. A bench-scale solar simulator in combination with an appropriate photochemical batch reactor was used to evaluate and select the optimal oxidation conditions of ofloxacin spiked in secondary treated domestic effluents. The concentration profile of the examined substrate during degradation was determined by UV/Vis spectrophotometry. Mineralization was monitored by measuring the dissolved organic carbon (DOC). The concentrations of Fe2+ and H2O2 were the key factors for the solar Fenton process, while the most important parameter of the heterogeneous photocatalysis was proved to be the catalyst loading. Kinetic analyses indicated that the photodegradation of ofloxacin can be described by a pseudo-first-order reaction. The rate constant (k) for the solar Fenton process was determined at different Fe2+ and H2O2 concentrations whereas the Langmuir-Hinshelwood (LH) kinetic expression was used to assess the kinetics of the heterogeneous photocatalytic process. The conversion of ofloxacin depends on several parameters based on the various experimental conditions, which were investigated. A Daphnia magna bioassay was used to evaluate the potential toxicity of the parent compound and its photo-oxidation by-products in different stages of oxidation. In the present study solar Fenton has been demonstrated to be more effective than the solar TiO2 process, yielding complete degradation of the examined substrate and DOC reduction of about 50% in 30 min of the photocatalytic treatment.  相似文献   

12.
A solar photocatalytic cascade reactor was constructed to study the photocatalytic oxidation of benzoic acid in water under various experimental and weather conditions at HKUST. Nine stainless steel plates coated with TiO(2) catalyst were arranged in a cascade configuration in the reactor. Photolytic degradation and adsorption were confirmed to be insignificant total organic carbon (TOC) removal mechanisms. A turbulent flow pattern and, hence, improved mixing in the liquid film were achieved due to the unique cascade design of the reactor. The photoinduced consumption of oxygen during reactions was demonstrated in a sample experiment. The proposed rate equations provided good fits to 90 data points from 17 experiments. The regression results showed that the TOC removal rates averaged over 30 min intervals did not illustrate significant dependence on TOC(0) and that I(mean) was more important in affecting the photocatalytic process within the ranges of the data examined. The percentage removal of TOC in 7 l of 100 mg/l (or 100 ppm) benzoic acid solutions increased from 30% to 83% by adding 10 ml of hydrogen peroxide solution (30 wt%). Hydrogen peroxide was also shown to enhance the efficiency of the degradation process at elevated temperatures. Ortho-, meta- and para-hydroxybenzoic acids were identified by HPLC analysis as the intermediates of benzoic acid during reactions without the addition of hydrogen peroxide solutions.  相似文献   

13.
An integrated approach combining chemistry and biological methods was conducted to assess the toxicity of seven sewage treatment plant effluents. Solid phase concentration procedures were applied to facilitate the study of organic micro pollutants. A chemical analysis was performed by GC/MS. Organic fraction toxicity was determined by using bioassays such as Daphnia magna and Chlorella vulgaris tests and sub-lethal effects were also evaluated by using Salmonella typhimurium Test (mutagenicity), recombinant yeast screen (estrogenicity), and Oryzias latipes embryo-larval test. More than 49 compounds were detected in the organic fraction due to the various inputs of each effluents. The most frequently detected compounds in the effluents were bisphenol A (BPA), octylphenol (OP), 1,2-benzenedicarboxylic acid, bis(2-ethylhexyl) ester (DEHP) and 1,2-benzenedicarboxylic acid, bis(methylpropyl) ester (DBP). Biological assays showed toxicity effects on D. magna tests in all samples, whereas toxicity on C. vulgaris or S. typhimurium tests were not observed. Estrogenicity and teratogenicity were observed in several samples. The cause-effect relationship could not be established given the high chemical complexity of the effluents and the lack of information available on 70% of the detected compounds subsequent to reviewing various data bases. Nevertheless, due to the high chemical variability revealed by STP effluents, bioassay sets may provide a very useful amount of information for detecting potential toxicity risks.  相似文献   

14.
In this work, the sensitivity of a battery of tests on the social amoeba Dictyostelium discoideum has been assessed within a freshwater toxicity study. The results obtained from the evaluation of survival and replication rate of D. discoideum were compared to those derived with a series of widely used tests for freshwater toxicity assessment, i. e. bioassays using Vibrio fischeri, Daphnia magna and Pseudokirchneriella subcapitata. The effects on sublethal endpoints, i.e. lysosomal membrane stability (LMS) and endocytotic rate, were analysed in conjunction with high-level endpoints to verify the potential to make a typical bioassay more sensitive. The field ecotoxicological investigation employing D. discoideum is part of a monitoring study assessing environmental quality of the Bormida River (Italy), subjected until recently to a chronic industrial pollution. The survey was carried out at several stations (upstream and downstream of a chemical factory outlet) in two different periods. In 2002, the results of chemical analyses performed on river water indicated no contamination. The ecotoxicological data obtained in this period showed that no evidence of biological effects was observed using V. fischeri and D. magna bioassays. In spite of the previous classical acute toxicity tests, significant differences in cell viability of D. discoideum were found. By analysing the effects measured on LMS and endocytotic rate, more relevant changes were observed for these sublethal stress biomarkers compared to survival. The chronic toxicity data showed significant changes in cell growth both of P. subcapitata and D. discoideum. Nevertheless, more sensitive and rapid responses were obtained when assessing the effects of exposure on D. discoideum. The chemical and ecotoxicological data obtained in 2006 indicated a full recovery of the quality of the river water (neither contamination nor toxicity found). Altogether, the results reported in this study underline that the use of a battery of biomarkers in conjunction with high-level endpoints may help follow the pollutant-induced stress syndrome in the organisms from early sublethal effects to starting mortality.  相似文献   

15.
Indium nitrate is mainly used as a semiconductor in batteries, for plating and other chemical and medical applications. There is a lack of available information about the adverse effects of indium compounds on aquatic organisms. Therefore, the toxic effects on systems from four trophic levels of the aquatic ecosystem were investigated. Firstly, the bacterium Vibrio fischeri, the alga Chlorella vulgaris and the cladoceran Daphnia magna were used in the toxicological evaluation of indium nitrate. The most sensitive model was V. fischeri, with a NOAEL of 0.02 and an EC(50) of 0.04 mM at 15 min. Although indium nitrate should be classified as harmful to aquatic organisms, it is not expected to represent acute risk to the aquatic biota. Secondly, PLHC-1 fish cell line was employed to investigate the effects and mechanisms of toxicity. Although protein content, neutral red uptake, methylthiazol metabolization, lysosomal function and acetylcholinesterase activity were reduced in cells, stimulations were observed for metallothionein levels and succinate dehydrogenase and glucose-6-phosphate dehydrogenase activities. No changes were observed in ethoxyresorufin-O-deethylase activity. To clarify the main events in PLHC-1 cell death induced by indium nitrate, nine modulators were applied. They were related to oxidative stress (alpha-tocopherol succinate, mannitol and sodium benzoate), disruption of calcium homeostasis (BAPTA-AM and EGTA), thiol protection (1,4-dithiotreitol), iron chelation (deferoxiamine) or regulation of glutathione levels (2-oxothiazolidine-4-carboxylic acid and malic acid diethyl ester). The main morphological alterations were hydropic degeneration and loss of cells. At least, in partly, toxicity seems to be mediated by oxidative stress, and particularly by NADPH-dependent lipid peroxidation.  相似文献   

16.
Fung AK  Chiu BK  Lam MH 《Water research》2003,37(8):1939-1947
A new ruthenium(II) photosensitizer, [Ru(II)(py-pzH)(3)](2+) (where py-pzH=3-(2'-pyridyl)pyrazole), has been synthesized. The complex displayed outstanding excited state redox properties (estimated Ru(III)/Ru(II)* approximately -1.24 V vs. NHE) and was expected to sensitize the injection of electrons into the conduction band of anatase TiO(2) upon visible irradiation. The photosensitizer was anchored onto the surface of anatase TiO(2) particles via in situ silylation. The silyl-linkage displayed excellent stability in both aqueous media, over a wide pH range, and in common organic solvents. The resultant material, TiO(2)-[Ru(II)(py-pz-Si identical with )(3)], was found to be able to mediate degradation of CCl(4) in neutral aqueous medium under broad band visible irradiation (lambda>450 nm). The relation between the rate of degradation and concentration of substrate was explored and the mechanism of the photodegradation of the perhalogenated organic was discussed.  相似文献   

17.
Renoux AY  Tyagi RD  Samson R 《Water research》2001,35(6):1415-1424
Sewage sludge can be applied to land to supply and recycle organic matter and nutrients. Trace elements in sludge, however, may accumulate in the soil with repeated sludge applications. Reducing metal content may therefore reduce the adverse effects of sludge application. The objective of this study was to evaluate the efficiency of bioleaching technology in reducing metal content and toxicity as measured by a battery of terrestrial and liquid-phase bioassays. Sludge-soil mixtures simulating the application of sludge to land were tested by means of terrestrial bioassays, barley (Hordeum vulgare L.) seed germination (5 d) and sprout growth (14 d), lettuce (Lactuca sativa) seed germination (5 d), and worm (Eisenia andrei) mortality (14 d). Liquid-phase bioassays, Microtox (Vibrio fischeri, 15 min), lettuce root elongation (L. sativa, 5 d), cladoceran mortality (Daphnia magna, 48 h), and SOS Chromotest (Escherichia coli) were used after elutriation of the sludge. Comparison of the bioassay results (except for D. magna) before and after treatment demonstrated that this bioleaching process reduced both sludge toxicity and metal content. In addition, lower Cu and Zn concentrations found in barley sprouts following treatment supported the assumption that the bioleaching process, by decreasing metal content and bioavailability, reduced sewage sludge toxicity. This study also emphasized the interest of using ecotoxicological bioassays for testing biosolids. In particular, the terrestrial bioassays after simulation of land application and the Microtox test after sludge elutriation proved to be the most appropriate procedures.  相似文献   

18.
This study was conducted in France within the context of waste classification (Hazardous Waste Council Directive 91/689/EEC), and focused on "ecotoxic" property (H14). In 1998, an experimental test strategy was developed to assess ecotoxicological properties of wastes using a battery of six standardized bioassays. This combined direct and indirect approaches integrating two solid-phase tests: emergence and growth inhibition of Lactuca sativa (14 days), mortality of Eisenia fetida (14 days) and four standardized tests performed on water extracts from wastes: growth inhibition of Pseudokirchneriella subcapitata (3 days), inhibition of mobility of Daphnia magna (48 h), inhibition of reproduction of Ceriodaphnia dubia (7 days), inhibition of light emission of Vibrio fischeri (30 min). This study aimed to set up preliminary conclusions on relevancy of this experimental test strategy, based on data obtained since 1998. Results were analyzed from the combined use of Hierarchical Cluster Analysis, Principal Component Analysis and Nonlinear Mapping. These multivariate analyses clearly showed that it was possible to reduce this number of tests without changing the typology of the wastes. A battery of bioassays including one solid phase test and two tests performed on water extracts (L. sativa, V. fischeri and C. dubia) was found as an optimal solution for characterizing the toxicity of the studied wastes. This optimal battery represents a good basis for determining the H14 property.  相似文献   

19.
The use of Bassia indica for salt phytoremediation in constructed wetlands   总被引:1,自引:0,他引:1  
The treatment and reuse of wastewater in constructed wetlands offers a low-cost, environmentally-friendly alternative for common engineered systems. Salinity in treated wastewater is often increased, especially in arid and semi-arid areas, and may harm crops irrigated from wetlands. We have strong evidence that halophyte plants are able to reduce the salinity of wastewater by accumulating salts in their tissues. Bassia indica is an annual halophyte with unique adaptations for salt tolerance. We performed three experiments to evaluate the capability of B. indica for salt phytoremediation as follows: a hydroponic system with mixed salt solutions, a recirculated vertical flow constructed wetland (RVFCW) with domestic wastewater, and a vertical flow constructed wetland (VFCW) for treating goat farm effluents. B. Indica plants developed successfully in all three systems and reduced the effluent salinity by 20-60% in comparison with unplanted systems or systems planted with other wetland plants. Salinity reduction was attributed to the accumulation of salts, mainly Na and K, in the leaves. Our experiments were carried out on an operative scale, suggesting a novel treatment for green desalination in constructed wetlands by salt phytoremediation in desert regions and other ecosystems.  相似文献   

20.
Pleurotus ostreatus grown in bioreactor batch cultures in a model phenolic wastewater (diluted and sterilized olive oil mill wastewater-OMW), caused significant phenolic removal. Laccase, the sole ligninolytic enzyme detected in the growth environment, was produced during primary metabolic growth. The bioprocess was simulated with the aid of a mathematical model and the parameters of growth were determined. When the fungal biomass was increased in the reactor (during repeated batch experiments) the rate of reducing sugars consumption progressively increased, but a phenolic fraction seemed of being strongly resistant to oxidation. The toxicity of OMW against the seeds of Lepidium sativum and the marine Branchiopoda Artemia sp. was significantly decreased after biotreatment. On the contrary, the toxicity against the freshwater Branchiopoda Daphnia magna was not affected by the treatment, whereas on the soil and freshwater sediments Ostracoda Heterocypris incongruens was slightly decreased. Both treated and untreated OMWs, used as water for irrigation of lettuce and tomato plants, did not significantly affect the uptake of several nutrients by the cultivated plants, but resulted in a decrease in the plant yields, which was minimized when high OMW dilutions were used. As a conclusion, P. ostreatus is able to reduce phenolic content and toxicity of sterilized OMW, in bioreactor cultures. However, high OMW dilutions should be used, and/or additional treatment should be applied before use of the OMW in the environment, e.g. as water for irrigation. Further research should be done in order to transfer this technology under industrial conditions (e.g. by using unsterilized OMW).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号