首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用分隔壁精馏塔分离裂解汽油。建立了分隔壁精馏塔小试装置,该装置主塔的理论板数57块,副塔的理论板数为16块。考察了回流比、液体分配比和侧线采出量对分离效果的影响,同时用Aspen Plus 软件对分隔壁精馏塔进行模拟。结果表明,最佳操作条件为进料速率4.7 kg/h、塔顶出料速率0.84 kg/h、侧线采出速率3.0 kg/h、液体分配比3、回流比5.5。在此条件下,塔顶C5的质量分数达到99.60%,侧线C6~C8的质量分数达到99.76%,实验结果与模拟结果基本一致。采用分隔壁精馏塔比常规分离流程可使再沸器能耗降低20.8 %。  相似文献   

2.
分隔壁精馏塔分离三组分烷烃混合物的研究   总被引:2,自引:2,他引:0  
利用自制的分隔壁精馏塔小试装置对正己烷、正庚烷和辛烷三组分混合物的分离进行了实验。考察了进入侧线采出段的液体流量与进入预分离段的液体流量之比(简称液体分配比)、进料位置和出料位置对分离效果的影响;并与带侧线采出的精馏塔进行比较。实验结果表明,在液体分配比为1、进料位置为分隔壁中间、出料位置为分隔壁中间时,塔顶馏出物中正己烷的质量分数可达99.72%,侧线采出物中正庚烷的质量分数可达95.48%,塔釜液中辛烷的质量分数可达96.80%;采用分隔壁精馏塔比常规带侧线精馏塔可得到更高纯度的中间产物和塔釜产物;采用Aspen Plus流程软件对分隔壁精馏塔模拟的结果与实验结果基本一致。  相似文献   

3.
研究了分隔壁精馏塔在分离苯和乙烯烷基化产物中的应用。采用Aspen Plus的Petlyuk模块对分隔壁精馏塔进行了模拟计算。首先采用等效三塔简捷模型计算分隔壁精馏塔的分壁段、主塔塔板数等参数,以此为基础,采用Petlyuk模型对分隔壁精馏塔进行严格计算,再采用Aspen的模型分析工具确定塔的最佳工艺参数。结果表明,对于乙烯和苯烷基化产物体系,采用分隔壁精馏塔分离的最佳参数为主塔理论塔板数58块、预分段理论塔板数25块,上、下端互联位置分别在15板、40板,进料位置在第10块板(预分段),侧线乙苯抽出位置在第24块板(基于主塔),主塔回流比13,互联物流液体流量500 kmol/h,气体流量950 kmol/h。在此参数下,计算得到的侧线采出乙苯质量分数为9992%,满足乙苯产品的纯度要求。  相似文献   

4.
分隔壁精馏塔分离裂解汽油的模拟   总被引:1,自引:0,他引:1  
提出了分离裂解汽油新工艺,用分隔壁精馏塔(DWC)替代传统工艺中的三个精馏塔。利用AspenPlus模拟软件对DWC工艺和传统精馏工艺进行了模拟,考察了回流比、分配比、侧线采出量等工艺条件对分离效果的影响,并对两种工艺进行了比较。模拟结果表明,DWC的最佳操作条件为:主塔理论板数为56块,副塔为12块板,回流比为7,液体分配比为3,气体分配比为2,同时需严格控制侧线采出流量。在此操作条件下,分隔壁精馏工艺比传统三塔精馏工艺节能26.89%。  相似文献   

5.
利用分隔壁精馏塔实验室小试装置对苯、甲苯、二甲苯三组分芳烃混合物的分离进行了初步探索,考察了进料组成、进料速度、回流比、分配比等因素对分离效果的影响。结果表明,当分隔壁精馏塔进料中甲苯的体积分数为60%、苯和二甲苯的含量相当、进料速度为1.1mL/min、分配比为1:2、回流比为6:1时,分离效果最佳,此时塔顶采出苯的质量分数达到94.9%,侧线采出甲苯的质量分数为96.4%,塔釜中不含轻组分。  相似文献   

6.
改进了乙烯装置顺序分离流程,将传统流程中的脱甲烷塔和脱乙烷塔集成为1个分壁精馏塔,实现C1、C2和C3+的分离,再分别经脱丙烷塔、炔烃选择加氢器、乙烯精馏塔、丙烯精馏塔等,得到聚合级的乙烯和丙烯产品。利用Aspen对分壁精馏塔进行等效模拟,并对新工艺进行全流程模拟。模拟结果表明,分壁精馏塔塔板数为43,进料在第17块板,侧线采出在第13块板,回流比2.6,隔板处于第7到第29块板之间,塔顶采出物中C1质量分数为99.94%,中间侧线采出物中C2的质量分数为99.97%,塔底釜液中C3+的质量分数为100%,实现了C1、C2和C3+的清晰分割。采用该新工艺可以得到质量分数分别为99.97%和99.98%的聚合级乙烯和丙烯产品,因此,建立的基于分壁精馏塔的乙烯装置顺序分离新工艺在技术上可行。  相似文献   

7.
提出了一种新的单塔萃取精馏精制芳烃和非芳烃的新工艺,新工艺采用分隔壁萃取精馏塔替代常规萃取精馏流程的萃取精馏塔及溶剂回收塔,不仅节省了设备投资,而且降低了总能耗。利用ASPENPLUS模拟软件,对分隔壁萃取精馏塔及常规萃取流程进行了模拟,考察了溶剂比、回流比及分配比对分隔壁萃取精馏塔的影响,并对两种流程进行了比较,结果表明,分隔壁萃取精馏塔的最佳操作条件为:塔板数为41块,侧线精馏段的板数为10块,回流比为1,溶剂比为3.5,分配比为1.25。在此条件下,分隔壁萃取精馏塔比常规的两塔萃取精馏流程节能25.2%。  相似文献   

8.
采用AspenPlus化工流程模拟软件中的MultiFrac模块,对分隔壁萃取精馏塔分离正丁烷和反-2-丁烯混合物的过程进行模拟,分析了溶剂比、回流比、汽相分配比对分离效果及能耗的影响。模拟结果表明,当分离要求为正丁烷纯度大于99.0%(w),反-2-丁烯纯度大于99.9%(w)时,分隔壁萃取精馏塔主塔理论板数40,副塔理论板数10;最佳工艺条件为溶剂比2.5,主塔回流比3.5,汽相分配比2.5;分隔壁萃取精馏塔能有效避免常规萃取精馏塔内的返混效应,因此节能效果显著。与常规萃取精馏塔相比,分隔壁萃取精馏塔再沸器和冷凝器可分别节能17.31%,25.81%。  相似文献   

9.
采用Aspen Plus软件对二氯甲烷废溶剂回收分离过程进行模拟研究,确定了萃取塔(T1)的理论塔板数、萃取剂水的用量、二氯甲烷精馏塔(T2)的进料塔板位置、回流比R及理论板数等。通过萃取和精馏分离提纯了二氯甲烷废溶剂中的二氯甲烷,在工艺参数:萃取塔(T1)的理论塔板数为8,萃取剂水与二氯甲烷废溶剂质量比为0.5,二氯甲烷精馏塔(T2)理论塔板数为20,实际塔板数取30为佳,二氯甲烷溶剂从16~18块塔板进料,侧线采出二氯甲烷,回流比R为1.5时,塔顶产品二氯甲烷的质量分数≥99.70%,水分≤0.15%。  相似文献   

10.
采用Aspen Plus模拟软件,对乙苯脱氢装置的反应产物进行了全流程的模拟分离,并对初分塔、苯乙烯塔、脱乙苯塔和苯回收塔的关键参数进行了优化设计.结果表明:初分塔的塔板数为80,最佳进料位置为第36块理论板,塔顶采出量为3 764 kg/h,回流比为7.7;苯乙烯塔的塔板数为14,最佳的进料位置为第6块理论板,塔顶采...  相似文献   

11.
《天然气化工》2017,(2):76-81
以某厂100万t/a双效节能型甲醇精馏装置为研究对象,采用流程模拟软件Aspen Plus进行流程模拟,模拟结果与实际值吻合良好。在此基础上,分别对预精馏塔、加压塔、常压塔和回收塔的工艺参数进行优化,优化后的工艺参数为预精馏塔萃取水流量为9200kg/h(占粗甲醇进料的7.3%),加压塔操作压力为800kPa,常压塔侧线采出位置为第61块板(从塔顶往下数),回收塔质量回流比为6.9。此外,对流程进行了适当优化,增加预精馏塔尾气水洗装置,进一步回收尾气中残余甲醇,达到节能环保要求。通过工艺参数优化和流程优化,产品中甲醇质量分数达到99.9%,乙醇质量分数低于10×10~(-6),甲醇回收率提高1.0%,甲醇精馏装置总能耗降低11.1%。  相似文献   

12.
叶青  钱春键  裘兆蓉 《石油化工》2007,36(11):1134-1138
采用隔壁精馏塔分离苯-甲苯-对二甲苯物系,用Aspen Plus软件模拟了隔壁精馏塔内温度分布及液相组成分布,考察了汽相和液相分配比对产品纯度的影响。对隔壁精馏塔模拟得到的优化操作条件为:隔壁精馏塔的理论板数为30块,侧线采出在第14块理论板,进料段为15块理论板,在进料段的第7块理论板进料,进料组成n(苯)∶n(甲苯)∶n(对二甲苯)为1∶3∶1,回流比为8.8,液相分配比为2.96,汽相分配比为0.83。在此条件下,各组分的摩尔分数大于98.5%,与实验结果基本吻合。当进料组成n(苯)∶n(甲苯)∶n(对二甲苯)为1∶3∶1时,采用隔壁精馏塔可比常规两塔流程节能27.18%。  相似文献   

13.
N-甲基吡咯烷酮法萃取精馏分离C_4馏分中1,3-丁二烯的模拟   总被引:1,自引:0,他引:1  
采用NRTL方程和UNIFAC模型计算N-甲基吡咯烷酮(NMP)-C4物系的汽液平衡数据,由实验数据回归得到NRTL方程的二元交互作用参数。采用AspenPlus流程模拟软件对NMP法萃取精馏分离C4馏分中1,3-丁二烯的萃取精馏塔进行模拟,模拟结果与实验结果的相对误差小于10%,表明萃取精馏塔的数学模型可靠。考察了回流比、溶剂比(溶剂NMP与进料C4的质量比)、理论板数等因素对分离1,3-丁二烯的影响。模拟结果表明,萃取精馏塔的最佳工艺条件为:理论板数70~80块,原料进料位置为第48~52块理论板,溶剂比12,回流比0.5~1.0,溶剂进料温度40~50℃,塔顶采出量0.150~0.155kg/h。  相似文献   

14.
对碳酸二甲酯(DMC)和二苯基脲反应耦合法合成苯氨基甲酸甲酯(MPC)的产物进行分离研究;测定了MPC的热重数据以及MPC-DMC物系的汽液平衡数据;在考虑了各组分分离特性的基础上,确定了单塔减压侧线采出工艺;采用AspenPlus过程模拟软件对分离工艺进行了模拟计算。优化的操作条件为:理论塔板数为12块,进料位置为第8块塔板,侧线采出位置为第4块塔板,塔顶采出量为535.3kg/h,侧线采出量为16.0kg/h,塔釜绝对压力为98.94kPa,回流比为0.12。在此条件下,分离得到的塔顶产品中xDMC=99.6%,DMC的收率大于99.0%;塔釜产品中xMPC=98.7%,MPC的收率大于99.0%。  相似文献   

15.
以糠醛为萃取剂,采用模拟软件Aspen Plus对环己烷-苯共沸物体系的分隔壁塔萃取精馏工艺进行了模拟优化。利用单变量灵敏度分析考察了分隔壁萃取精馏塔的塔板数、回流比、溶剂比、萃取剂和原料的进料位置等因素对产品纯度及再沸器热负荷的影响。确定了最优的工艺条件:分隔壁萃取精馏塔主塔及副塔的理论板数分别为34和10,回流比分别为2和3,主塔溶剂比为2.4,原料和萃取剂的进料位置分别为第22块板和第7块板,气相分配比为0.2,侧线抽出板的位置为主塔的第31块板。与传统的萃取精馏相比,分隔壁塔萃取精馏工艺可降低能耗13.5%。  相似文献   

16.
以乙二醇为萃取剂,利用Aspen Plus软件中的Rad Frac模块和NRTL物性方法对叔丁醇-乙醇-水混合溶液的常规萃取和隔壁塔萃取分离工艺流程进行了模拟与优化,分别考察了各塔回流比、塔板数、原料进料位置、萃取剂用量及进料位置、侧线采出位置等因素对分离效果的影响。结果表明:隔壁塔萃取分离模拟工艺最佳优化条件中萃取塔T 1~T 4的理论塔板数依次为26,26,41,15块,进料塔板依次为第7,15,40,16块,回流比依次为2.5,1.3,2.7,2.0,T 2和T 3萃取剂进料位置均为第5块;2种工艺分离出的叔丁醇、乙醇、水的质量分数均超过95.00%,且隔壁塔萃取分离工艺比常规萃取分离工艺节能约65.03%。  相似文献   

17.
建立了石脑油芳烃抽提原料的分类集总,通过分壁精馏塔的严格稳态模拟,确定了塔的结构参数和工艺操作条件,实现了塔顶产品中苯质量分数小于1%,侧线采出比不大于75%,侧线中间组分(C6?C8)质量收率99%的分离目标。在Aspen Dynamic环境下构建分壁精馏塔动态控制模型,三回路温度控制方案研究结果表明,分壁精馏塔可以很好地完成目标产品的分离,带有前馈的温度控制策略可很好应对进料组成的波动,所需稳定时间较短,稳定后的产品质量符合分离要求。  相似文献   

18.
基于苯和乙醇共沸组成对压力敏感性的变化,提出了变压精馏与热集成相结合的方法对苯和乙醇共沸体系进行了流程模拟,并对各塔的关键参数进行优化设计,得到了最佳的工艺操作参数:高压塔的理论板数为20,进料位置为第10块理论板,回流比为10,塔顶采出量为902 kg/h,操作压力为1.0 MPa;常压塔理论板数为18,进料位置为第10块理论板,回流比为5,塔顶采出量为569.5 kg/h,操作压力为0.1 MPa;得到了苯和乙醇的质量分数分别为99.02%和95.23%。采用热量集成的方法,可降低常压塔塔顶循环物流的加热能耗34.1 kW。  相似文献   

19.
用分隔壁精馏塔对苯类混合物分离的工艺分析   总被引:2,自引:0,他引:2  
为证明分隔壁精馏塔比普通精馏塔在分离效率、能耗等方面的优势,文中以苯、甲苯和二甲苯的混合物为研究对象,采用Aspen Plus工程模拟软件,进行模拟计算。结果表明:进料位置、回流比、侧线采出位置、液体分配比均对分离效果产生影响。  相似文献   

20.
《天然气化工》2017,(2):106-109
利用Aspen Plus模拟软件对丙烷-异丁烷分离过程中的精馏塔进行研究,在设计规定下得到分离所需的理论板数、最佳进料位置、回流比和灵敏板等最优参数。通过Aspen Dynamics考察了进料变化对精馏塔塔顶压力、灵敏板温度、塔釜和回流罐液位变化以及塔顶和塔底产品采出量的影响,模拟结果对控制方案的选择和实际生产均具有重要的指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号