共查询到20条相似文献,搜索用时 70 毫秒
1.
2.
本文主要研究序列图像中目标自适应跟踪方法.文章首先分析比较了目前国内外常用的分割方法的优缺点,然后提出了一种可以实现快速跟踪的算法.该方法利用序列连续图像的帧间相关性和差异性检测目标,把目标历史运动信息经过预测滤波后的结果和差值的序列图像信息进行比较,以达到快速跟踪的目的. 相似文献
3.
4.
6.
弱小目标检测与跟踪算法 总被引:8,自引:1,他引:8
低对比度小目标检测与跟踪算法的研究是电视跟踪领域的关键技术之一。针对弱小目标的目标特性,按USAN原则进行目标检测,利用目标的特征参数及目标运动的一致性、连续性排除噪声干扰,实现对目标的稳定跟踪。实验采用VC++仿真平台验证该算法的可行性和有效性,并移植到DSP专用图像处理平台上,达到了工程的5可靠性与实时性要求。 相似文献
7.
针对声呐小目标检测由于水下环境复杂、目标回波信号弱等因素造成虚警率和误检率较高的问题,文章提出基于背景抑制和改进直线分割检测(Line Segment Detection, LSD)的检测算法。首先对原始声呐数据截取序列片段,构建多周期累积历程图,凸显运动目标轨迹线特征;其次设计边缘滤波算子,有效滤除部分背景噪声,并结合投影变换进行线特征增强,不仅实现了断裂直线重连,还抑制了剩余噪声;然后基于图像金字塔改进了多尺度LSD直线分割检测算法,有效缓解了过检测问题,大幅增加了直线平均长度;最后为了合并冗余检测信息,利用运动轨迹时空一致性特征设计后处理模块,提高了检测定位精度。通过多组无人遥控潜水器(Remotely Operated Vehicle, ROV)、潜水员、空心球靶小目标序列的湖试、海试数据的定量与可视化结果定性分析,实验结果显示,文中算法与传统LSD相比,误检率和漏检率分别降低了11.2和3.9个百分点,定位误差下降了1.495个像素。结果表明,文中所提算法大幅提高了声呐小目标检测精度,为后续水下目标识别、跟踪等任务奠定重要基础。 相似文献
8.
基于卡尔曼滤波的多运动目标跟踪算法研究 总被引:2,自引:0,他引:2
针对多运动目标跟踪的实时性和鲁棒性问题,本文提出了一种基于卡尔曼滤波的多运动目标跟踪算法,该算法运用卡尔曼滤波预测目标的位置,并以目标的中心点坐标、面积和长宽比特征、一维HSV颜色直方图作为目标的特征对当前帧检测到的目标模板和预测区域内的目标进行匹配。实验证明,该算法可实时、稳定地跟踪复杂场景内的多运动目标,并能够解决目标遮挡问题。 相似文献
9.
10.
11.
12.
13.
14.
为克服运动目标检测中易出现的光照变化、遮挡、虚假目标等现象,提出了一种随机图像选取与自适应背景更新的运动物体检测方法.该方法从视频序列中随机选取一帧图像作为初始背景,根据变化标记矩阵对背景进行自适应迭代更新,以提取可靠的背景图像,实现运动物体的检测.实验结果表明,采用该算法提取的背景不存在混合现象,且在光照变化较大以及运动物体之间存在遮挡的情况下,能够构造出可靠的背景,检测出的目标物体清晰可见. 相似文献
15.
对于形状和表面纹理都有变化的物体的检测,局部不变性算子并不适用,而现有的局部描述符对于区分这种形状的作用也并不明显。为此本文提出了一种新的基于方向描述符的物体检测算法。根据模型轮廓图或边缘图像计算出初始描述符,在此基础上为图像中的每一点生成方向描述符。方向描述符既可以描述边界的走向,又可以容忍边界的较小变形。使用多分辨率加速的滑动窗口算法,将每个有效的候选区域与模型的描述符矩阵进行匹配,以判断此位置是否包含目标物体。实验结果显示,本文算法取得了相对较高的检测率。 相似文献
16.
17.
18.
19.
Ali Raza Samia Allaoua Chelloug Mohammed Hamad Alatiyyah Ahmad Jalal Jeongmin Park 《计算机、材料和连续体(英文)》2023,75(2):3275-3289
Pedestrian detection and tracking are vital elements of today’s surveillance systems, which make daily life safe for humans. Thus, human detection and visualization have become essential inventions in the field of computer vision. Hence, developing a surveillance system with multiple object recognition and tracking, especially in low light and night-time, is still challenging. Therefore, we propose a novel system based on machine learning and image processing to provide an efficient surveillance system for pedestrian detection and tracking at night. In particular, we propose a system that tackles a two-fold problem by detecting multiple pedestrians in infrared (IR) images using machine learning and tracking them using particle filters. Moreover, a random forest classifier is adopted for image segmentation to identify pedestrians in an image. The result of detection is investigated by particle filter to solve pedestrian tracking. Through the extensive experiment, our system shows 93% segmentation accuracy using a random forest algorithm that demonstrates high accuracy for background and roof classes. Moreover, the system achieved a detection accuracy of 90% using multiple template matching techniques and 81% accuracy for pedestrian tracking. Furthermore, our system can identify that the detected object is a human. Hence, our system provided the best results compared to the state-of-art systems, which proves the effectiveness of the techniques used for image segmentation, classification, and tracking. The presented method is applicable for human detection/tracking, crowd analysis, and monitoring pedestrians in IR video surveillance. 相似文献