首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
对GCr15轴承钢LF精炼过程各阶段的钢中氧及夹杂物含量进行了研究.结果表明,在现有工艺条件下,LF精炼15~20 min时钢中氧含量已降低到较低水平,LF精炼结束后软吹时间控制15 min左右较为合理;LF精炼结束及中间包钢中大部分夹杂物尺寸在15 μm以下;应进一步加强浇铸环节的控制,减少钢水的二次污染.  相似文献   

2.
为了研究高碱度精炼渣对GCr15轴承钢夹杂物的影响规律,采用真空感应炉对GCr15轴承钢进行了重熔精炼实验,并用扫描电镜与能谱分析仪对原样和重熔样夹杂物的尺寸、形貌和化学成分进了分析。研究结果表明:经重熔精炼后各类型夹杂物尺寸均明显减小。高碱度精炼渣重熔过程中,Al_2O_3类夹杂转变为部分复合钙铝酸盐外包硫化物的Al_2O_3夹杂;初始钙铝酸盐类夹杂转变成外包硫化物的钙铝酸盐夹杂;此外,简单的硫化物夹杂转变为复合硫化物,从而在熔炼过程中更易上浮脱除。高碱度精炼作用可显著改变夹杂物形态及尺寸,提高GCr15轴承钢质量。  相似文献   

3.
采用ASPEX自动扫描电子显微镜夹杂物分析系统,结合热力学理论分析,研究了GCr15轴承钢LF精炼终点CaO-MgO-Al2O3夹杂的形成机理.结果 表明,LF精炼开始达到稳定时,钢液中的夹杂物主要以Al2O3夹杂为主,到LF精炼终点时演变成为近似球形的Al-Mg-Ca-(S)类复合夹杂.MgO·Al2O3/CaO·A...  相似文献   

4.
研究了在EAF-EBT-LF-VD-CC冶炼工艺下影响轴承钢GCr15洁净度的N、Ti、Ca、S、O等元素的变化规律,以及对GCr15质量的影响.结果表明:EBT出钢和LF精炼期的增N量町以通过VD真空脱气和钢包软吹氩去除,而Ti的来源主要在于合金和耐火材料的带入;EBT出钢过程中加入活性石灰和Ca处理都易导致钢中Ca含量的增加;高碱度精炼渣有利于钢水脱硫,但不利于改善钢中夹杂物的性质和形态;GCr15钢中夹杂物主要是呈菱形的氮化钛和硅铝镁氧化物夹杂.  相似文献   

5.
杨光维  郝鑫  杨叠  王新华  黄福祥  王万军 《钢铁》2014,49(11):31-35
 研究了EAF→LF→VD→软搅→CC工艺生产GCr15轴承钢冶炼过程钢中T[O]及非金属夹杂物的变化情况。通过将电炉出钢碳质量分数控制为0.2%~0.4%、出钢加铝强脱氧及造预精炼渣、LF精炼过程造高碱度强还原性炉渣、VD真空强搅拌及防止中间包二次氧化,可以生产[w(T[O])]等于8×10-6的轴承钢。在炉外精炼过程中夹杂物经历了Al2O3→MgO·Al2O3→CaO-MgO-Al2O3演变。LF精炼过程夹杂物平均尺寸减小,经过VD真空处理后尺寸增加,接着在软搅和中间包过程继续减小。利用VD真空处理可以去除高达74%的夹杂物。  相似文献   

6.
采取转炉高拉碳出钢、双渣法冶炼、LF高碱度渣精炼、RH真空脱气、连铸加强保护浇铸及控制钢液过热度等措施,有效控制GCr15轴承钢中的氧、氮、硫、磷、钛等元素及夹杂物含量。试验表明:提高转炉出钢碳质量分数,有利于降低钢中的氧质量分数;随着炉渣碱度的升高,钢液中ω(O)大幅降低;GCr15轴承钢经过RH真空处理,钢液中的ω(TO)从0.002 8%下降到0.000 9%;双渣法冶炼可以提高转炉冶炼前期的脱磷率;LF精炼和连铸过程增氮,RH过程降氮;LF精炼过程是控制ω(Ti)的关键;夹杂物和碳化物都得到有效控制。  相似文献   

7.
孙菲  王丹  吴晓东 《江西冶金》2009,29(6):5-10
利用金相、SEM等分析方法,取样分析了某电炉厂EAF—LF—VD—CC流程GCr15轴承钢精炼过程非金属夹杂物的行为,试验结果表明,LF处理后夹杂物以云团状Al2O2、点状不变形夹杂物和硫化物为主;VD处理后Al2O3和点状不变形夹杂物明显减少,而含钙、镁、铝、硫等的复合夹杂有所增加;成材试样中未发现点状不变形夹杂物,只有少量尺寸很小的三氧化二铝、硫化物和含钙、镁、铝、硫等的复合夹杂。精炼过程夹杂数量呈下降趋势,并分析了各类夹杂物的来源.  相似文献   

8.
《炼钢》2015,(5)
针对某钢厂GCr15轴承钢生产过程中精炼渣大量结块,导致钢液吸气,钢中夹杂物增多的问题,采用SEM和XRD分析方法,对不同渣系精炼渣的显微组织和结晶矿相进行分析,研究了不同组分对精炼渣结晶性能的影响。结果表明:GCr15轴承钢精炼渣为多矿相混合体,温降过程中大量析出的高熔点矿相包裹在钙铝酸盐或非晶相外,或分布于钙铝酸盐中,增大钙铝酸盐的结合强度,造成精炼渣结块。优化精炼渣组成处于相图中低熔点物相区,有效解决了精炼渣结块问题,使轧材中w(N)和w(O)合格率分别提高了7.07%,6.26%,非金属夹杂物合格率提高了14.70%,改善了GCr15钢洁净度。  相似文献   

9.
GCr15钢的生产流程为120 t BOF-LF-RH-CC工艺。BOF出钢加200 kg铝块进行强脱氧,同时LF过程控制Al含量至0.030%~0.045%,LF结束夹杂物主要为MgO·Al2O3,RH真空后MgO·Al2O3夹杂物被去除,钢水中夹杂物以钙铝酸盐为主,但是连铸浇铸过程MgO·Al2O3夹杂物又会重新生成。因为LF精炼过程Al-MgO和C-MgO反应的存在,高碳铝脱氧GCr15轴承钢LF精炼结束更容易获得MgO·Al2O3夹杂物,并促进中间包钢水MgO·Al2O3夹杂物重新生成。当BOF出钢仅加40 kg铝块进行预脱氧,LF结束钢水MgO·Al2O3夹杂物数量显著降低,同时中间包钢水中MgO·Al2O3夹杂物不再重新生成。此外,将低钛低铝硅铁由出钢过程改为LF过程加入,也可以有效控制钢水中MgO·Al2O3夹杂物数量。   相似文献   

10.
对“120 t BOF-LF-RH-CC”流程GCr15轴承钢的洁净度研究结果表明,LF精炼结束以Al2O3·MgO尖晶石和Al2O3-MgO-CaO夹杂为主,RH真空处理后,Al2O3·MgO尖晶石几乎全部消失,钢中夹杂物以液态钙铝酸盐为主,T.O含量降至5.3×10-6;浇注过程中间包重新生成Al2O3·MgO尖晶...  相似文献   

11.
采用扫描电镜和大样电解等检验方法对抗硫管线钢的冶炼过程试样和连铸坯中夹杂物的数量、尺寸、成分、形貌进行系统分析。结果表明:钢液经过LF精炼后,显微夹杂物的面积比降低了34.7%;中间包钢液的夹杂物面积比较VD出站增加了6.1%。LF进站钢液中的夹杂物主要为Al_2O_3夹杂物,在LF精炼和VD真空处理过程中由于钢渣间的相互作用,形成以CaO、MgO、Al_2O_3为主要组成的复合型夹杂物。钙处理后夹杂物中的CaO和Al_2O_3的物质的量比接近12∶7,并与钢液发生了脱硫反应,形成了含CaS的复合夹杂物。中间包开浇阶段铸坯中的显微夹杂物和大型夹杂物都明显高于稳定浇铸状态;在稳定浇铸状态下,铸坯中的w(T[O])小于15×10~(-6),大型夹杂物的含量小于0.2 mg/kg;大型夹杂物的主要来源是钢包引流砂、结晶器保护渣。  相似文献   

12.
 The behavior of non-metallic inclusions in LCAK (low carbon aluminum killed) steel produced by BOF (basic oxygen furnace)-LF (ladle furnace) refining-FTSC (flexible thin slab continuous caster) production route was investigated. The results showed that, LF refining for LCAK steel could decrease the wT[O] significantly, and the inclusions were modified by Ca treatment, which prevented nozzle clogging efficiently. However, owing to the unstable casting condition in the earlier stage of casting, a severe reoxidation occurred, accompanied with mold slag entrapment. The transformation of non-metallic inclusions during the steelmaking process was Al2O3→MgO-Al2O3 type inclusion→MgO-Al2O3-CaO type inclusion with a CaS ring, and the mechanism of the transformation was proposed and discussed via thermodynamic and kinetic analysis. Besides, to avoid CaS precipitation, the product of w2[Al]×w3[S] in steel should be less than 2.0×10-10 at 1873 K, which remands higher desulfurization ratio during LF refining.  相似文献   

13.
 为了优化不同钢种的LF精炼钙处理工艺,研究了高强结构钢、低碳结构钢、焊瓶钢、耐磨钢、高碳钢在LF精炼及钙处理过程中夹杂物的演变机理。结果表明,渣 钢反应时间越长,钙处理前的夹杂物变性越彻底。钙处理前焊瓶钢夹杂物以Al2O3为主,高强结构钢、低碳结构钢夹杂物以MgO Al2O3 CaO复合夹杂为主;高碳钢、耐磨钢夹杂物以低熔点的Al2O3 CaO夹杂为主。钙处理工艺会增加钢液中夹杂物数量及尺寸。控制Al2O3 SiO2 MnO复合夹杂物的关键是避免LF精炼中后期进行硅锰合金化。综合考虑各方面因素,建议焊瓶钢增加当前的钙线喂入量,高强结构钢、低碳结构钢使用轻钙处理工艺,高碳钢、耐磨钢取消钙处理工艺。  相似文献   

14.
 通过热力学计算及转炉、LF炉、中间包、铸坯的系统取样与SEM、EDS等检测,对BOF-LF-CSP工艺生产的SPHC钢夹杂物在各工序的种类、数量、变性及组成进行了研究。结果表明,在BOF-LF-CSP过程中, 转炉终点夹杂物以Al2O3为主,在LF炉钙处理后钢水Al2O3夹杂的质量分数降低到铝处理后时的50%,出LF炉时钢中剩余的Al2O3夹杂基本完成了球化变性,并以铝酸钙复合物或硅酸盐结合的镁铝钙复合物为主,球化率约为72%;铸坯内夹杂物的平均粒径为5. 4μm、球化率为75. 8%。Al2O3经历了①Al2O3→CaO·6Al2O3→CaO·2Al2O3或CaO·Al2O3→12CaO·7Al2O3或CaO·3Al2O3;②Al2O3→MgO-Al2O3→MgO-Al2O3-CaO→MgO-Al2O3-CaO-SiO2的演变,正确合理的精炼工艺会使夹杂物充分上浮、球化及变形,提高钢水可浇性及钢材性能。  相似文献   

15.
王章印  姜敏  王新华 《钢铁》2022,57(2):63-72
冶炼Q345D钢时由于夹杂物导致的探伤不合格情况时有发生,为了进一步去除和控制钢中非金属夹杂物,通过工业试验研究了"LF精炼→RH真空精炼→钙处理→软吹→连铸"工艺中的夹杂物生成及演变规律,并通过热力学计算优化钙处理工艺.结果 表明,转炉炉后及LF进站时采用铝强脱氧,夹杂物主要为Al2O3,LF精炼过程采用高碱度、强还...  相似文献   

16.
Steel plate cold common (SPCC) is a Al-killed steel with Ca-treatment. The control of Al2O3 inclusion into low melting point liquid region is beneficial for inclusion removal, cast-ability promotion and defects reduction during rolling. Thus it is essential to understand steel-inclusion equilibrium since inclusion composition is determined by composition of liquid steel directly through steel-inclusion reaction. Thermodynamic calculation software FactSage is performed to understand how to control inclusion composition during ladle furnace (LF) refining, and industrial trials are carried out to verify calculated results. Firstly, target region for controlling CaO-Al2O3-MgO ternary inclusion is analyzed on the basis of the ternary phase diagram and the relationship between activities related to pure solid and activities related to pure liquid was fixed by thermodynamic analysis in order to obtain reliable activities for components of inclusions in the target region by FactSage. In addition, inclusions in steel samples are detected by scanning electron microscopy (SEM) combined with energy dispersive spectroscopy (EDS). It is found that most of Al2O3 inclusions are modified into lower melting point region but a number of them are still located in high melting point region at the end of LF refining after Ca-treatment. Moreover, the composition of liquid steel equilibrating with liquid CaO-Al2O3-MgO inclusion is obtained by steel-inclusion equilibrium calculation when w[Al]s is approximating 0.03% as: a[O] is 1.0×10-6 to 4.0×10-6, w[Ca] is 20×10-6 to 50×10-6 and w[Mg] is 0.1×10-6 to 3.0×10-6. At last, stability diagrams of various calcium aluminates and CaS are established and they show that liquid calcium aluminate inclusions form when w[Ca] is more than 20×10-6, but CaS precipitation is difficult to prevent because sufficiently low w[S] (<0.003%) is required.  相似文献   

17.
GCr15钢的生产流程为90t转炉-LF-VD-250mm×280mm方坯连铸-轧制。转炉出钢加铝脱氧,LF由高碱度渣[/%:55~58CaO,3~10MgO,12~16SiO2,16~24Al2O3,≤1(MnO+FeO)]精炼,LF喂Al后T[O]为14×10-6,LF终点T[O]10×10-6。采用SEM(扫描电镜)+EDS(能谱仪)的方法,研究了线材中超标DS类夹杂物的成分分布,发现夹杂物中心以复合氧化物CaO-MgO-Al2O3为主,外围包裹少量CaS;这些氧化物中,Al2O3含量约占65%,分布最为均匀;CaO含量约占20%,MgO含量约占15%。统计分析结果表明,VD真空处理后每平方毫米13μm以上大颗粒夹杂物数量增至7,软吹后降至2.1,线材中1/3大颗粒夹杂物来源于钢包渣带入。  相似文献   

18.
为研究90 t BOF-RH-LF-CC流程生产的超低碳钢AISI1006夹杂物控制情况,通过对200 mm×200 mm铸坯横断面不同位置夹杂物进行统计分析,结果表明:钢中小颗粒夹杂占比较大,尺寸5~10μm的夹杂物占比达到91.0%,10~13μm的占比3.6%,13μm以上占比5.4%。尺寸较大夹杂主要分布于铸坯中心。在铸坯1/4边长处夹杂物分布最多,其次是近中心处,铸坯近表面处夹杂物最少。铸坯内夹杂物主要为Al2O3、Al2O3·CaO·(CaS·MnS)、Al2O3·CaO·MgO·(CaS·MnS)、MgO·Al2O3·(CaS·MnS)复合夹杂物,为内生夹杂物。开展工艺优化改进,RH高真空保持时间控制在15 min以上,LF精炼做好脱氧造渣及脱硫,精炼时间控制在90 min以内,精炼终渣碱度在6~7,出站前喂入硅钙线进行变性处理,软吹时间控制在25 min以上,连铸做好保护浇注,中间包开大氩气流量吹...  相似文献   

19.
杜松林  高振波  李颂  梁海庆  包燕平 《钢铁》2007,42(2):18-20,38
硅镇静钢及少量铝脱氧的钢在LF处理过程中会发生钢水中铝含量增加以及夹杂物组成改变的现象.通过理论计算和工业生产实践研究了不同的渣系、钢水成分、处理时间等对LF精炼过程增铝的影响,不同精炼渣系下钢中夹杂的组成,结果表明采用CaO-SiO2渣系LF处理过程几乎不发生增铝现象,而采用CaO-Al2O3渣系随着处理时间的延长以及钢种成分的区别,钢中铝有不同程度的增加,生产实践结果与理论计算趋势基本一致.采用CaO-Al2O3渣系精炼与CaO-SiO2渣系相比,钢中Al2O3夹杂数增加4倍,氧化物复合夹杂中w(Al2O3)提高113%,w(CaO)提高24.5%.在帘线钢72A以及HRB400、SS400钢的生产实践中加以应用,使得LF处理后72A的w(Al)小于0.000 5%,HRB400、SS400的小于0.003%,避免了有害夹杂物的形成,消除了在小方坯连铸过程中的水口堵塞现象.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号