首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
LZ92镁锂合金在210~300℃、0.001~1 s-1条件下进行等温压缩试验,分析合金流变行为,根据应力峰值建立合金的热变形本构方程。结果表明:应力峰值随变形温度升高而减小,随应变率增大而增大。该本构方程能较好预测合金的应力峰值,变形激活能Q为108 291.51 J/mol。试验验证,该本构方程预测的应力峰值精度较高,平均相对误差为8.55%,相关系数为0.98。  相似文献   

2.
为指导06Cr18Ni11Ti奥氏体不锈钢塑性加工工艺参数制定及构建数值模型所需材料数据,利用热模拟试验机进行单向等温压缩试验,温度为900~1 200℃,应变速率为0.01~1.00 s-1,变形量为60%。根据真应力-真应变曲线对06Cr18Ni11Ti奥氏体不锈钢热变形机制进行分析,结合线性拟合建立流变应力本构方程和临界应变模型。结果表明:在较高变形温度和较低应变速率下,06Cr18Ni11Ti不锈钢的主要软化机制为动态再结晶,真应力随温度升高而降低,随应变速率减小而降低;为验证流变应力本构方程的准确度,比对预测结果与试验结果,相对误差在10%以内,得到06Cr18Ni11Ti奥氏体不锈钢的热变形激活能为440.61 kJ/mol。  相似文献   

3.
用Instron-8032拉伸试验机,在变形温度为298~573 K、应变率为0.001~0.1 s-1时,研究5754铝合金的流变行为。基于改进的Fields-Backofen方程,建立用于5754铝合金板料温拉伸本构模型。结果表明:应变率相同时,随温度升高,流变应力降低,伸长率升高,断口韧窝变深、变大;变形温度相同时,随应变率升高,流变应力升高,伸长率降低,断口韧窝变浅;当变形温度为573 K、应变率为0.001 s-1时,铝合金板料流变应力出现明显软化现象,动态再结晶特征明显。本构模型计算结果与试验数据较吻合,可预测5754铝合金温成形流变行为。  相似文献   

4.
对7A52/7055铝合金层状复合材料进行准静态压缩试验以及不同温度、不同应变速率条件下的冲击压缩试验,并分析其应力-应变、能量吸收和本构模型。结果表明:当应变率为(1 000~3 000)s-1时,7A52/7055铝合金层状复合材料在高应变率下敏感性较高,其流动应力随应变率的增大而升高,在高温条件下材料的流动应力变化不明显;在350℃时能量吸收效果明显,当7A52和7055层厚比为1∶2时,能量吸收效果最佳;基于MATLAB curvefitting拟合出的Johnson-Cook模型能较好地预测试验中铝合金层状复合材料的流动应力。  相似文献   

5.
用Gleeble3500热模拟试验机对挤压态6082铝合金进行等温恒应变率压缩试验,变形温度为350~500℃,应变率为0.01~7.5 s-1,获得不同变形条件下的真应力-真应变曲线,建立本构方程和热加工图,并对不同条件下显微组织进行分析.结果表明:挤压态6082铝合金为正应变率敏感材料,该材料热变形软化机制主要为动态回复,热变形失稳主要是析出相聚集导致局部流变失稳,计算得到该合金的热变形激活能为175.17 kJ/mol,安全加工区主要分布在375~500℃,0.001~0.5 s-1,随应变增加安全加工区变化很小.  相似文献   

6.
利用Gleeble-3800热模拟机对TC4钛合金在550~800 ℃温区进行热变形试验研究。通过真应力、真应变分析得到TC4钛合金峰值应力随温度升高而降低、应变速率增大而升高,确定了550~800 ℃温区热变形激活能、建立了流变应力本构关系以及峰值应力与温度和变形速率之间的函数关系。通过热变形模拟为TC4钛合金热加工参数的合理制定与控制提供依据。  相似文献   

7.
利用Gleeble-3500热模拟试验机,在温度为300~420℃、应变速率为0.000 5~0.500 0 s~(-1)条件下对AZ80+0.4%Ce变形镁合金进行热模拟实验,研究该合金的高温流变行为。用ZIESS PL-A662数码光学显微镜分析温度与应变速率对合金显微组织演化规律的影响。结果表明:应变速率一定时,流变应力随温度的升高逐渐降低;变形温度一定时,合金的流变应力随应变速率的增大而升高。合金的显微组织演化过程为变形温度较低时,存在大量未结晶的粗大晶粒,动态再结晶进行不完全,温度升高后,动态再结晶进行较完全;动态再结晶晶粒尺寸随应变速率的增加而减小。最后,以经典的Arrhenius本构关系模型为基础,采用线性回归方法建立AZ80+0.4%Ce变形镁合金的流变应力本构模型,对比峰值应力的实验值与计算值,平均相对误差仅为6.00%。  相似文献   

8.
利用Gleeble-3800热模拟机对TC4钛合金在550~800℃温区进行热变形试验研究。通过真应力、真应变分析得到TC4钛合金峰值应力随温度升高而降低、应变速率增大而升高,确定了550~800℃温区热变形激活能、建立了流变应力本构关系以及峰值应力与温度和变形速率之间的函数关系。通过热变形模拟为TC4钛合金热加工参数的合理制定与控制提供依据。  相似文献   

9.
金属材料在高应变率下的热粘塑性本构模型   总被引:3,自引:0,他引:3  
提出了一种考虑应变强化、应变率强化、热软化效应及材料损伤的本构模型,通过在Johnson-Cook热粘塑性本构关系中增加一个随应变增大应力减速小的软化项,反映材料的损伤.该模型可以很好地预测材料的整个变形过程,同时提供了一个确定软化项系数的简单方法.  相似文献   

10.
使用分离式霍普金森压杆(SHPB)对Al-0.59Mg-0.58Si-0.2Cu(质量分数/%)铝合金进行室温下、应变率为(800~5 200)s-1的高速冲击试验,分析其变形行为,并确定Johnson-Cook本构方程。结果表明:Al-Mg-Si-Cu铝合金在室温高速冲击变形过程中,应力不随应变率增加而增加;当应变率为800、2 500、3 100 s-1,应变为0.08时,随着应变率的增加,织构类型发生改变,平均斯密特因子和应力减小;确定Al-Mg-Si-Cu铝合金的J-C本构方程,本构拟合结果与试验结果吻合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号