首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An experimental investigation of the performance of a commercially available vapor absorption refrigeration (VAR) system is described. The natural gas-fired VAR system uses aqua-ammonia solution with ammonia as the refrigerant and water as the absorbent and has a rated cooling capacity of 10 kW. The unit was extensively modified to allow fluid pressures and temperatures to be measured at strategic points in the system. The mass flow rates of refrigerant, weak solution, and strong solution were also measured. The system as supplied incorporates air-cooled condenser and absorber units. Water-cooled absorber and condenser units were fitted to extend the VAR unit's range of operating conditions by varying the cooling water inlet temperature and/or flow rates to these units. The response of the refrigeration system to variations in chilled water inlet temperature, chilled water level in the evaporator drum, chilled water flow rate, and variable heat input are presented.  相似文献   

2.
The hydraulic refrigeration system (HRS) is a vapor-compression system that accomplishes the compression and condensation of the refrigerant in a unique manner, by entraining refrigerant vapor in a down-flowing stream of water and utilizing the pressure head of the water to compress and condense the refrigerant. A multi-stage HRS was designed, fabricated, and tested using n-butane as the refrigerant. In general, both the refrigeration rate and the coefficient of performance (COP) increased with a corresponding decrease in the compression fluid temperature of the third and final stage. The refrigeration rate and COP were also found to increase with a corresponding increase in evaporator temperature. The predictions of an enhanced model incorporating two-phase hydraulic losses show excellent agreement with the experimental data with a maximum error of ±20%. The results of the experimental investigation indicate that the HRS offers an attractive and feasible alternative to conventional vapor-compression systems, especially in applications where direct-contact heat exchange in the evaporator is desirable.  相似文献   

3.
Experimental investigation of mass recovery adsorption refrigeration cycle   总被引:1,自引:0,他引:1  
The study investigates the performance of silica gel–water adsorption refrigeration cycle with mass recovery process by experimental prototype machine. In an adsorption refrigeration cycle, the pressures in adsorber and desorber are different. The mass recovery cycle utilizes the pressure difference to enhance the refrigerant mass circulation. Moreover, novel cycle was proposed for improvement of cooling output. In our previous study, simulation analysis shows that mass recovery cycle has the advantage over conventional single-stage. Experiments with prototype machine were conducted to investigate the performance improvement of mass recovery cycle in the present paper. Specific cooling power (SCP) and coefficient of performance (COP) were calculated with experimental data to analyze the influences of operating conditions. The proposed cycle was compared with the single-stage cycle in terms of SCP and COP. The results show that SCP of mass recovery cycle is superior to that of conventional cycle and mass recovery cycle is effective with low temperature heat source.  相似文献   

4.
A refrigeration system was developed which combines a basic vapor compression refrigeration cycle with an ejector cooling cycle. The ejector cooling cycle is driven by the waste heat from the condenser in the vapor compression refrigeration cycle. The additional cooling capacity from the ejector cycle is directly input into the evaporator of the vapor compression refrigeration cycle. The governing equations are derived based on energy and mass conservation in each component including the compressor, ejector, generator, booster and heat exchangers. The system performance is first analyzed for the on-design conditions. The results show that the COP is improved by 9.1% for R22 system. The system is then compared with a basic refrigeration system for variations of five important variables. The system analysis shows that this refrigeration system can effectively improve the COP by the ejector cycle with the refrigerant which has high compressor discharge temperature.  相似文献   

5.
When used in traditional pool-boiling type refrigeration cycles, non-azeotropic mixed refrigerants tend to result in a reduced efficiency compared to pure refrigerants. This results from the composition shift effect, which distributes the mixture components: concentrating the more volatile component in the high pressure part of the cycle, and the less volatile component in the low pressure part. The obvious effect of this is to increase the compression ratio relative to a single component. This article investigates a way of manipulating the composition change of a refrigerant mixture, using two components of similar volatility, in order to reduce the compression ratio. Counter-current vapour–liquid contact is used in a “refrigeration column”, which is combined with a distillation column. The cycle is able to exploit heat sources below 100°C as input to the distillation column and the designer is able to optimise the consumption of compressor power and distillation heat input.  相似文献   

6.
The mixing of refrigeration oil with refrigerant in a refrigeration cycle has great influence on cycle performance. A sampling method is the most general way to measure the mixing ratio of refrigerant and refrigeration oil. Since the sampling method is time-consuming and reduces the amount of refrigerant and oil in the cycle, a real-time measurement is desirable. In this study, a refractive index measurement was applied to measure the mixing ratio of refrigerant/oil mixture. A laser displacement sensor was used to detect any change in optical path which results from changes of the refractive index of refrigerant/oil mixture. For the practical application of real-time measurement of the oil circulation ratio (OCR) in the refrigeration cycle, a correlation between the refractive index and the mixing ratio was developed. In addition, the changes of the refractive index in a range of a few percentages of the oil concentration and under subcooled conditions were measured. Finally, a transient measurement of the OCR in a practically operating refrigeration cycle was carried out successfully.  相似文献   

7.
A combined-cycle refrigeration system (CCRS) that comprises a conventional refrigeration and air-conditioning system using mechanical compressor (RAC/MC) and an ejector-cooling cycle (EJC) is proposed and studied. The EJC is driven by the waste heat from the RAC/MC and acts as the bottom cycle of the RAC/MC. A system analysis shows that the COP of a CCRS is significantly higher than a single-stage refrigeration system. Improvement in COP can be as high as 18.4% for evaporating temperature of the RAC/MC Te at −5°C. A prototype of the CCRS was built and tested in the present study. Experimental results show that at Te=−4.5°C, COP is improved by 14% for a CCRS. For Te at 5°C, COP can be improved by 24% for a CCRS with higher condensing temperature of the RAC/MC. The present study shows that the CCRS using the ejector-cooling cycle as the bottom cycle of the RAC/MC is viable. Further improvement in COP is possible since the prototype is not designed and operated at an optimal condition.  相似文献   

8.
CO2 and propane mixtures are considered as alternative refrigerants due to their negligible direct global warming potentials and favorable thermodynamic properties. To properly evaluate the system performance using zeotropic mixtures, the circulation concentration was measured and the cause for its shift from the charged concentration was discussed. The circulation concentration of CO2/propane mixtures has increased CO2 fraction than its charged concentration. In addition, the effect of refrigerant charge on the cooling performance was tested for the transcritical cycle of CO2 and the subcritical cycle of CO2/propane mixtures of 75/25 and 60/40 by the charged mass percentage. It is shown that CO2 refrigeration system could operate without a significant impact on its COP over a relatively wider range from the optimum charge.  相似文献   

9.
This paper addresses the problem of absorption of refrigerant vapor in a stagnant layer of lubricant oil. The bulk motion of the solute is described in terms of apparent diffusion coefficients that encompass both molecular diffusion and possible macroscopic motion induced by liquid density instability and surface tension. In absorption of refrigerant mixtures, diffusion in the vapor and liquid phases are coupled with a thermodynamic model for interfacial equilibrium. Results are compared with experimental data available in the literature for absorption of several refrigerants in polyol ester oil (POE68). The adequacy of the formulation is assessed in the light of its basic assumptions and performance of the model.  相似文献   

10.
We propose in this article an absorption chiller operating with binary alkane mixtures as an alternative to compression machines. It is an installation using low-level energy at a temperature below 150 °C (waste heat or solar energy) and operating with environmentally friendly fluids. Ten mixtures are considered and compared with two cooling mediums of the condenser and the absorber: the ambient air at 35 °C and the water at 25 °C. For an air-cooled chiller, the COP reaches 0.37 for the n-butane/octane system. This value remains 27% lower than that of an ammonia/water installation operating under the same conditions. For a water-cooling chiller, the n-butane/octane and propane/octane systems give a COP of about 0.63, which is comparable to that of the ammonia/water system. When n-butane is used as refrigerant, the machine works at a pressure under 5 bars, which is an advantage compared with machines working with ammonia/water mixtures.  相似文献   

11.
This paper is a part in a series that reports on the experimental study of the performance of the two-phase ejector expansion refrigeration cycle. In the present study, three two-phase ejectors are used as an expansion device in the refrigeration cycle. The effects of throat diameter of the motive nozzle, on the coefficient of performance, primary mass flow rate of the refrigerant, secondary mass flow rate of the refrigerant, recirculation ratio, average evaporator pressure, compressor pressure ratio, discharge temperature and cooling capacity, which have never before appeared in open literature, are presented. The effects of the heat sink and heat source temperatures on the system performance are also discussed.  相似文献   

12.
A lubrication agent is necessary in almost all the refrigeration vapour compression systems, particularly for the correct operation of the compressor. However, a certain portion of the oil always circulates with the refrigerant through the cycle. This circulation is at the origin of a deviation from the theoretical behaviour (i.e. based on pure refrigerant) of the components. This article aims at reviewing the oil-related researches in the field of refrigeration. Previous reviews in the literature focused on the thermo-hydraulic consequences of the presence of oil; we will analyse here its thermodynamical consequences. In a first part, a brief literature review will give an overview of current scientific and technological issues concerning the impact of oil on components or on whole refrigeration systems. The typical approaches and methods employed to address this problem will be described. These researches require sound tools for the evaluation of thermodynamic properties of refrigerant–oil mixtures. The second part of this article is hence a critical review of these tools, and focuses particularly on liquid–vapour equilibrium, absorption–diffusion, and mixture enthalpy calculation.  相似文献   

13.
An innovative hybrid hollow fiber membrane absorber and heat exchanger (HFMAE) made of both porous and nonporous fibers is proposed and studied via mathematical simulation. The porous fibers allow both heat and mass transfers between absorption solution phase and vapor phase, while the nonporous fibers allow heat transfer between absorption solution phase and cooling fluid phase only. The application of HFMAE on an ammonia–water absorption heat pump system as a solution-cooled absorber is analyzed and compared to a plate heat exchanger falling film type absorber (PHEFFA). The substantially higher amount of absorption obtained by the HFMAE is made possible by the vast mass transfer interfacial area per unit device volume provided. The most dominant factor affecting the absorption performance of the HFMAE is the absorption solution phase mass transfer coefficient. The application of HFMAE as the solution-cooled absorber and the water-cooled absorber in a typical ammonia–water absorption chiller allows the increase of COP by 14.8% and the reduction of the overall system exergy loss by 26.7%.  相似文献   

14.
The consequences of the oil rejected by the compressor of a vapour-compression refrigeration system on the operation of the evaporator and condenser are analysed. The modelled prototype uses the mixture of HFC R410A and a synthetic polyolester (POE) oil. The rise of the amount of lubricant circulating in the system leads to a progressive change in the behaviour of the mixture of refrigerant and oil that, for the higher oil mass fraction, evolves like a zeotropic mixture. One also observes that the presence of lubricant is generally associated with a fall of the performances of the heat exchangers, except however in the evaporator where an optimum is observed when the quantity of oil is equal to 0.1% of the total mass of the mixture. Some conclusions are drawn about the choice of correlations for the calculation of the refrigerant side heat transfer coefficient in a plate evaporator.  相似文献   

15.
A new combined power and refrigeration cycle is proposed for the cogeneration, which combines the Rankine cycle and the ejector refrigeration cycle by adding an extraction turbine between heat recovery vapor generator (HRVG) and ejector. This combined cycle could produce both power output and refrigeration output simultaneously, and could be driven by the flue gas from gas turbine or engine, solar energy, geothermal energy and industrial waste heats. Parametric analysis and exergy analysis are conducted to examine the effects of thermodynamic parameters on the performance and exergy destruction in each component for the combined cycle. The results show that the condenser temperature, the evaporator temperature, the turbine inlet pressure, the turbine extraction pressure and extraction ratio have significant effects on the turbine power output, refrigeration output, exergy efficiency and exergy destruction in each component in the combined cycle. It is also shown that the biggest exergy destruction occurs in the heat recovery vapor generator, followed by the ejector and turbine.  相似文献   

16.
In this paper, a new solution cycle in the double absorption heat transformer is presented and the thermodynamic performance of this new cycle is simulated based on the thermodynamic properties of aqueous solution of lithium bromide. The results show that this new cycle is superior to the cycle being studied by some researchers. This new solution cycle has a wider range of operation in which the system maintains the high value of COP and has larger temperature lifts and operation stability. The relationship between the absorber and the absorbing evaporator is more independent and this makes the operation and control of the system more easier.  相似文献   

17.
Ammonia in low capacity refrigeration and heat pump systems   总被引:2,自引:0,他引:2  
Ammonia has been used as refrigerant in large vapour compression systems continuously since the beginning of the era of refrigeration. In small systems, it has hardly been used at all since the introduction of the halogenated hydrocarbons around 1930. Lately, with the search for alternatives with less influence on global warming, the use of ammonia in small systems has come into focus again.In the present paper, the work done at the Royal Institute of Technology (KTH) with the aim of developing a prototype of a domestic water to water heat pump with a heating capacity of 9 kW is presented. It has been shown that such a system can be designed to operate with about 100 g of ammonia.Crucial problems in the development of the direct expansion system were to arrange for oil return, and to achieve good heat transfer in the evaporator. These problems were solved by use of an oil which is soluble in ammonia.The main obstacle for introducing this technology commercially is the limited supply of components. Particularly, there are no hermetic or semi-hermetic compressors for ammonia available in this size range.  相似文献   

18.
This study deals with an experimental investigation for a counter-current slug flow absorber, working with ammonia–water mixture, for significantly low solution flow rate conditions that are required for operating as the GAX (generator absorber heat exchanger) cycle. It is confirmed that the slug flow absorber operates well at the low solution flow rate conditions. From visualization results of the flow pattern, frost flow just after the gas inlet, followed by slug flow with well-shaped Taylor bubble, is observed, while dry patch on the tube wall are not observed. The liquid film at the slug flow region has smooth gas–liquid interface structure without apparent wavy motion. The local heat transfer rate is measured by varying main parameters, namely, ammonia gas flow rate, solution flow rate, ammonia concentration of inlet solution and coolant inlet conditions. The heat transfer rate while absorption is taking place is higher than that after absorption has ended. The absorption length is greatly influenced by varying main parameters, due to flow conditions and thermal conditions.  相似文献   

19.
The objectives of this paper are to analyze a combined heat and mass transfer for an ammonia–water absorption process, and to carry out the parametric analysis to evaluate the effects of important variables such as heat and mass transfer areas on the absorption rate for two different absorption modes — falling film and bubble modes. A plate heat exchanger with an offset strip fin (OSF) in the coolant side was used to design the falling film and the bubble absorber. It was found that the local absorption rate of the bubble mode was always higher than that of the falling film model leading to about 48.7% smaller size of the heat exchanger than the falling film mode. For the falling film absorption mode, mass transfer resistance was dominant in the liquid flow while both heat and mass transfer resistances were considerable in the vapor flow. For the bubble absorption mode, mass transfer resistance was dominant in the liquid flow while heat transfer resistance was dominant in the vapor region. Heat transfer coefficients had a more significant effect on the heat exchanger size (absorption rate) in the falling film mode than in the bubble mode, while mass transfer coefficients had a more significant effect in the bubble mode than in the falling film mode.  相似文献   

20.
The theoretical efficiency limits of heat driven heat pumps operating between three and four temperatures are derived from the fundamental thermodynamical laws, i.e. the energy balance and the entropy balance. While in the three temperatures case the system is fully determined by specification of the three temperatures and the cooling capacity, a four temperature heat pump needs, in addition to the four temperatures and the cooling capacity, specification of an additional operating parameter. This can be, for example, the ratio of the two heat flows which are released at the two different intermediate temperatures. Various assumptions regarding this proportion are discussed with respect to their relevance for both the combination power cycle/vapor compression cycle as well as for single-effect sorption cycles. The present analysis shows that a single-effect sorption heat pump is principally not able to operate reversibly in an environment of four externally specified temperatures unless the four temperatures follow, incidentally, a correlation that is given by the equilibrium properties of the employed working fluids. Therefore, in endo-reversible models for four-temperature sorption cycles only three rather than four operating temperatures may be specified independently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号