首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
A novel and rapid microwave method was used to prepare TiO2 coated ZnO nanocomposite particles. The resulted particles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). Results show that ZnO nanoparticles were coated with 6-10 nm amorphous TiO2 layers. In addition, zeta potential analysis demonstrated the presence of TiO2 layer on the surface of ZnO nanoparticles. Photoluminescence (PL) spectroscopy and UV-visible spectroscopy were used to investigate the optical properties of the nanoparticles. Compared to uncoated ZnO nanoparticles, the TiO2 coated ZnO nanoparticles showed enhanced UV emission. The UV-visible diffuse reflectance study revealed the significant UV shielding characteristics of the nanocomposite particles. Moreover, amorphous TiO2 coating effectively reduced the photocatalytic activity of ZnO nanoparticles as evidenced by the photodegradation of Orange G with uncoated and TiO2 coated ZnO nanoparticles under UV radiation.  相似文献   

2.
《Materials Research Bulletin》2013,48(11):4576-4582
Nano-crystalline ZnO particles were synthesized using two different routes: soft-wet and dry methods. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to identify the particles structures and morphologies, while X-ray diffraction (XRD) was used for verifying the particles crystal structure. The thermal stabilities of the particles were examined through thermal gravimetric analysis technique and their surface areas were calculated using BET method. Moreover, the photocatalytic activities were evaluated using UV–vis spectroscopy and photoluminescence (PL) characterization. The results showed that all the prepared ZnO samples possess a hexagonal wurtzite structure with high purity. Different particle sizes and morphologies of spheres, rods and wires were obtained depending on the preparation method used. Particle sizes obtained by the dry method are smaller than that found by the wet chemical method. The effects of both particle size and morphology on each of surface as well as optical properties, photocatalytic activity, dye/ZnO solar cell efficiency and biological activity have been studied and discussed.  相似文献   

3.
Nanocrystalline particles of pure anatase titania were prepared by two different methods. One is the sol-gel method at ambient temperature using ultrasonication (TiO2-SG-US) and conventional stirring method (TiO2-SG-S) and the other by surfactant assisted hydrothermal synthesis (TiO2-HT). More uniform distribution/dispersion of the nanoparticles (SEM), marginally higher surface area, better thermal stability and phase purity are some of the advantages of preparation of nanocrystalline titania by sol gel ultrasonication method and hydrothermal synthesis method. The behavior of anatase titania in photocatalytic decomposition of methylene blue in aqueous medium was studied as a function of the method of preparation and the crystallite size. The nanoparticles prepared by ultrasonication method were more effective than both, the sample prepared by conventional stirring method and commercial Degussa P-25. The higher photocatalytic activity of TiO2-SG-US is attributed to the more uniform size of the particles as compared to TiO2-SG-S samples. Both TEM and XRD data on TiO2-HT samples reveal a uniform and nanocrystalline TiO2 particles, which showed photocatalytic activity in both UV and visible region although brookite phase was also present.  相似文献   

4.
We report a new method to synthesize Ag/ZnO heterostructures assisted by UV irradiation. The formation of Ag/ZnO heterostructures depends on photogenerated electrons produced by ZnO under UV light to reduce high valence silver. Functional property of the Ag/ZnO heterostructures is evaluated by photodegradation of methylene blue (MB) under UV illumination. Results of photodegradation tests reveal that the optimal photocatalytic activity of as-syntheszied samples is about 1.5 times higher than the pure ZnO synthesized in the same condition or commercial TiO2 (P-25), showing the advantage of the unique structure in the Ag/ZnO heterostructure. Besides, due to the reduced activation of surface oxygen atom, photocatalytic activity of the photocatalysts has no evident decrease even after three recycles.  相似文献   

5.
We report the large-scale synthesis of hexagonal cone-shaped ZnO nanoparticles by the esterification between zinc acetate and alcohol. The morphology of the ZnO nanoparticles was investigated by transmission electron microscopy, selected area electron diffraction and scanning electron microscopy measurements. The synthesized ZnO nanoparticles are single-crystalline with hexagonal phase and show a strong UV emission at −378 nm due to the excellent crystallinity of particles. A possible formation mechanism of the hexagonal cone-shape structure is proposed. Furthermore, the as-prepared ZnO particles exhibit high photocatalytic activity for the photocatalytic degradation of Rhodamine B, indicating that the ZnO nanostructure is promising as a semiconductor photocatalyst.  相似文献   

6.
Layered zinc hydroxychloride (Zn5(OH)8Cl2·H2O) synthesized by hydrolyzing the ZnO particles in aqueous ZnCl2 solutions at 100 °C for 48 h was outgassed at different temperatures ranging from 100 to 250 °C for 2 h and the structure and adsorption properties of the products were examined by various means. Outgassing at 100-150 °C eliminated the H2O molecules in interlayer of zinc hydroxychloride. The layered structure of zinc hydroxychloride was disintegrated at 175 °C by breaking the OH?Cl hydrogen-bond in interlayer to form curled thin films composed of poorly crystallized β-Zn(OH)Cl and ZnO, leading to the increment of the specific surface area from 4 to 39 m2/g. The β-Zn(OH)Cl was decomposed at 225 °C to form ZnO. The crystallinity of ZnO was increased on elevating the outgassing temperature, giving rise to the UV absorption property. The H2O and CO2 adsorption measurements revealed that the zinc hydroxychloride outgassed at 100-150 °C possessed a high H2O and CO2 adsorption selectivity, and the selectivity diminished by the formation of thin films of ZnO above 175 °C.  相似文献   

7.
In this paper, ZnO/epoxy composites with homogeneous dispersion were prepared via two simple steps: firstly, in situ preparation of zinc hydroxide (Zn(OH)2)/epoxy from the reaction of aqueous zinc acetate (Zn(Ac)2·2H2O) and sodium hydroxide (NaOH) at 30 °C in the presence of high viscosity epoxy resin; secondly, thermal treatment of the as-prepared Zn(OH)2/epoxy hybrid into ZnO/epoxy composites. Meanwhile, the structure, composition and mechanical properties of the resultant products were successfully investigated. From the result of characterization we found that the composite had the optimal mechanical property at ZnO fraction of 5 wt.%. Compared to pure epoxy resin, the improvement of ultimate tensile stress, elongation at break, tensile modulus and flexural strength achieved about 40.84%, 24.35%, 27.27% and 51.43%, respectively. The crack arresting mechanisms included particle matrix debonding, plastic void growth, in the composites with a stronger interface, significant plastic deformation of the matrix around the well bonded particles. At the same time, the possible reactive mechanism of the preparation of ZnO/epoxy composite was discussed in this paper.  相似文献   

8.
This paper introduces a novel electrochemical route for preparing the ZnO/graphene heterojunction composite via high temperature. This process includes: (1) depositing the electrochemically reduced graphene oxide (ERGO) on ITO glass via cyclic voltammetry; (2) pulse plating a zinc (Zn) layer on the ERGO; (3) thermally treating the Zn/ERGO composite and “in situ” to obtain the ZnO/ERGO composite. SEM characterizations revealed that the Zinc Oxide (ZnO) particles were homogenously distributed on the surface of graphene sheets. XRD and Raman spectra found a ZnCO3 phase in the ZnO/ERGO composite, which demonstrated that when the Zn film transformed into ZnO particles during thermal treatment, Zn also reacted with graphene and formed a ZnCO3 intermediate layer at the interface between ZnO and ERGO via short-range diffusion. Compared with the heterojunction formed from regular chemical route, the present process provided a tight contact and combination between ZnO and ERGO, which eventually led to a heterojunction between ZnO and graphene sheets. This heterojunction exhibited great improvement for separation efficiency of photo-generate electron–hole pairs. Experimental results of ultraviolet–visible (UV–Vis) light catalysis demonstrated that the photocatalytic activity of the ZnO/ERGO composite had been greatly improved, and exhibited a value of three times higher than that of pure ZnO.  相似文献   

9.
《Materials Research Bulletin》2013,48(11):4699-4703
A facile synthetic procedure for N-doped ZnO powders was proposed. In this work, N-doped ZnO crystals were synthesized in diethylene glycol (DEG) with ammonia solution via solvothermal process. Incorporated N concentration increases with the amount of ammonia solution. In order to confirm the defects of as-gained ZnO powders, the samples were characterized by XRD, PL, and EPR. In our results, the N-related defects were considered to be (N)O centers as acceptors, other than (N2)O. And, the donors defects were confirmed to Hi. UV photocatalytic activity of the N-doped ZnO crystals was assessed from the photodegradation kinetics of methyl orange (MO). The result shows that the UV photocatalytic activity of N-doped ZnO decreases with the incorporated N concentration. This was caused by abundant acceptors hindered the photoinduced holes generating.  相似文献   

10.
Undoped and Ni doped zinc oxide (Ni–ZnO) thin films were prepared by a facile spray pyrolysis technique using perfume atomizer from aqueous solution of anhydrous zinc acetate (Zn(CH3COOH)2 and hexahydrated nickel chloride (NiCl2·6H2O) as sources of zinc and nickel, respectively. The films were deposited onto the amorphous glass substrates kept at (450 °C). The effect of the [Ni]/[Zn] ratio on the structural, morphological, optical and electrical properties of Ni doped ZnO thin film was studied. It was found from X-ray diffraction (XRD) analysis that both the undoped and Ni doped ZnO films were crystallized in the hexagonal structure with a preferred orientation of the crystallites along the [002] direction perpendicular to the substrate. The scanning electron microscopy (SEM) images showed a relatively dense surface structure composed of crystallites in the spherical form whose average size decreases when the [Ni]/[Zn] ratio increases. The optical study showed that all the films were highly transparent. The optical transmittance in the visible region varied between 75 and 85%, depending on the dopant concentrations. The variation of the band gap versus the [Ni]/[Zn] ratio showed that the energy gap decreases from 2.95 to 2.72 eV as the [Ni]/[Zn] ratio increases from 0 to 0.02 and then increases to reach 3.22 eV for [Ni]/[Zn] = 0.04. The films obtained with the [Ni]/[Zn] ratio = 0.02 showed minimum resistivity of 2 × 10−3 Ω cm at room temperature.  相似文献   

11.
In this paper, composite particles of nano zinc oxide coated with titanium dioxide were prepared and characterized by TEM, XRD, XPS and FT-IR, and the properties of the composite particles for photo catalysis and light absorption were studied. Tetrabutyl titanate (TBT) was hydrolyzed in an alcoholic suspension of nano zinc oxide with diethanolamine (DEA) as an additive, resulting in a film with a thickness of 20–30 nm being coated on the surface of nano zinc oxide, and the composite particles contained ZnTiO3 after drying and calcination. Photocatalysis capabilities of the composite particles for the degradation of phenol in an aqueous solution were greatly improved as compared with nano zinc oxide particles before coating, with pure nano ZnO and nano TiO2 with similar average sizes, or with the mixture of nano ZnO and TiO2 with the similar composition as the composite particles. The light absorption scope of the composite particles was enlarged when compared to nano titanium dioxide with same average size.  相似文献   

12.
Samples of zinc oxide were obtained by thermal decomposition of zinc salts (acetate and nitrate) and by precipitation (chloride and nitrate). The samples were characterized by SBET, X-ray diffraction (XRD), temperature-programmed reduction (TPR) and scanning electron microscopy (SEM). XRD showed that ZnO crystals exhibited similar morphologies, while the crystal size and the particles morphology, availed by SEM, are dependent on the preparation method and the precursor salt utilized. The catalytic properties were evaluated to sec-butyl alcohol (SBA) reaction, using nitrogen, hydrogen and synthetic air as carrier gas. The catalytic properties of ZnO surface are strongly dependent on crystal size, atmosphere of reaction and zinc salts precursor. The activity to dehydrogenation of SBA in oxidant atmosphere is strongly sensitive to crystal size, while the selectivity to methyl ethyl ketone (MEK) is slightly sensitive. The activity to dehydrogenation and dehydration of SBA increases with change of atmosphere reaction from oxidant to reducing. High reaction temperatures and reducing environment for ZnO sample with small crystal size decrease significantly the selectivity to MEK. The ZnO crystal size has an important role to establish the properties of partial reduction of ZnO and catalytic properties.  相似文献   

13.
The potential to improve the mechanical, thermal, and optical properties of poly(methyl methacrylate) (PMMA)/clay nanocomposites prepared with clay containing an organic modifier was investigated. Pristine sodium montmorillonite clay was modified using cocoamphodipropionate, which absorbs UVB in the 280–320 nm range, via ion exchange to enhance the compatibility between the clay platelets and the methyl methacrylate polymer matrix. PMMA/clay nanocomposites were synthesized via in situ free-radical polymerization. Three types of clay with various cation-exchange capacities (CEC) were used as inorganic layered materials in these organic–inorganic hybrid nanocomposites: CL42, CL120, and CL88 with CEC values of 116, 168, and 200 meq/100 g of clay, respectively. We characterized the effects of the organoclay dispersion on UV resistance, effectiveness as an O2 gas barrier, thermal stability, and mechanical properties of PMMA/clay nanocomposites. Gas permeability analysis demonstrated the excellent gas barrier properties of the nanocomposites, consistent with the intercalated or exfoliated morphologies observed. The optical properties were assessed using UV–Visible spectroscopy, which revealed that these materials have good optical clarity, UV resistance, and scratch resistance. The effect of the dispersion capability of organoclay on the thermal properties of PMMA/clay nanocomposites was investigated by thermogravimetric analysis and differential scanning calorimetry; these analyses revealed excellent thermal stability of some of the modified clay nanocomposites.  相似文献   

14.
A new and rapid method for silica coating of ZnO nanoparticles by the simple microwave irradiation technique is reported. Silica-coated ZnO nanoparticles were characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), high-resolution transmission electron microscopy (HR-TEM), CHN elemental analysis and zeta potential measurements. The FT-IR spectra and XPS clearly confirmed the silica coating on ZnO nanoparticles. The results of XPS analysis showed that the elements in the coating at the surface of the ZnO nanoparticles were Zn, O and Si. HR-TEM micrographs revealed a continuous and uniform dense silica coating layer of about 3 nm in thickness on the surface of ZnO nanoparticles. In addition, the silica coating on the ZnO nanoparticles was confirmed by the agreement in the zeta potential of the silica-coated ZnO nanoparticles with that of SiO2. The results of the photocatalytic degradation of methylene blue (MB) in aqueous solution showed that silica coating effectively reduced the photocatalytic activity of ZnO nanoparticles. Silica-coated ZnO nanoparticles showed excellent UV shielding ability and visible light transparency.  相似文献   

15.
Here we report, copper (Cu) and Aluminum (Al) doped zinc oxide (ZnO) nanoparticles by a novel one step microwave irradiation method for the first time. Powder X-ray diffraction (XRD) reveals that both pure and doped samples assigned to hexagonal wurtzite type structure. The calculated average crystalline size decreases from 24 to 11 nm for pure and doped (Al and Cu) ZnO respectively, which is in good agreement with the particles size observed from Transmission Electron Microscope (TEM) analyses. A considerable red shift in the absorption edge and the reduction in the energy gap from 3.35 to 2.95 eV reveal the substitution of Al3+ and Cu2+ ions into the ZnO lattice analyzed by UV–Vis transmission spectra. The photocatalytic degradation of Methyl Violet (MV), Phenol and Rhodamine B (RHB) was investigated by using pure, Al and Cu doped ZnO catalyst under UV light irradiation. The results showed that the photocatalytic property is significantly improved by Cu doping concentration. This could be attributed to extended visible light absorption, inhibition of the electronehole pair’s recombination and enhanced adsorptivity of dye molecule on the surface of Cu–ZnO nanopowders. The samples were further characterized by photoluminescence spectra and Fourier Infrared Spectra (FTIR) analysis.  相似文献   

16.
A series of novel ZnO/polyimide composite films with different ZnO contents was prepared through incorporation hexagonal disklike ZnO particles into poly(amic acid) of the pre polymer of the polyimide. The hexagonal disklike ZnO particles with a diameter of 300-500 nm were synthesized from zinc acetate and NaOH in water with citric acid. The prepared zinc oxide-polyimide composites were characterized for their structure, morphology, and thermal behavior employing Fourier transform infrared spectroscopy, scanning electron micrograph, X-ray diffraction and thermal analysis techniques. Thermal analyses show that the ZnO particles were successfully incorporated into the polymer matrix and these ZnO/polymer composites have a good thermal stability. Scanning electron microscopy studies indicate the ZnO particles were uniformly dispersed in the polymer and they remained at the original size (300-500 nm) before immobilization. All composite films with ZnO particle contents from 1 to 5 wt% show good transparency in the visible region and luminescent properties.  相似文献   

17.
A two-step urea aqueous solution process at a low temperature (90 °C) was employed for the preparation of a copper/zinc oxide material. Well defined porous spherical particles with average sizes of around 5 μm in diameter were prepared first and then used as a support for further copper-zinc precipitation. It was found that the particle composition and shape were changed with applied stirring speed (100 rpm or 200 rpm) and that particle size is inversely proportional to the copper content in the particles. The particles preserved their size and shape after the heat treatment. Prepared Cu/ZnO samples showed catalytic activity for the reaction of steam reforming of methane. Samples were characterized by scanning field emission electron microscopy, energy dispersive X-ray analyses, X-ray powder diffraction, surface area analyses, and atomic absorption spectroscopy.  相似文献   

18.
Chemical bath deposition (CBD) is an inexpensive and low temperature method (25-90 °C) that allows to deposit large area semiconductor thin films. However, the extent of the desired heterogeneous reaction upon the substrate surface is limited first by the competing homogeneous reaction, which is responsible for colloidal particles formation in the bulk solution, and second, by the material deposition on the CBD reactor walls. Therefore, the CBD method exhibits low efficiency in terms of profiting the whole amount of starting materials. The present work describes a procedure to deposit ZnO thin films by CBD in an efficient way, since it offers the possibility to minimize both the undesirable homogeneous reaction in the bulk solution and the material deposition on the CBD reactor walls. In a first stage, zinc peroxide (ZnO2) crystallizing with cubic structure is obtained. This compound shows a good average transparency (90%) and an optical bandgap of 4.2 eV. After an annealing process, the ZnO2 suffers a transformation toward polycrystalline ZnO with hexagonal structure and 3.25 eV of optical bandgap. The surface morphology of the films, analyzed by atomic force microscope (AFM), reveals three-dimensional growth features as well as no colloidal particles upon the surface, therefore indicating the predominance of the heterogeneous reaction during the growth.  相似文献   

19.
Aligned ZnO nanorods and nanotubes were grown on the silicon substrates by thermal evaporation of high pure zinc powders without any other metal catalyst. The morphology evolution of ZnO nanostructures with prolonged growth time suggested that the growth of the ZnO nanorods and nanotubes follows the vapor–liquid–solid mechanism. ZnO nanoneedle and nanoparticle films were also synthesized by the same way, and their photocatalytic performances were tested for the degradation of organic dye methylene blue. The ZnO nanoneedle films exhibited very high photocatalytic activities. The decomposition kinetics of the organic pollutant was discussed. Moreover, it is found that the ZnO nanoneedle films showed very stable photocatalytic activity.  相似文献   

20.
Transparent colloidal ZnO quantum-dot (QD)/graphene nanocomposites were formed on poly(ethylene terephthalate) (PET) substrates. Ultraviolet (UV)–visible absorption spectra showed a shoulder peak around 350 nm corresponding to the absorption of ZnO QDs. Optical transmittance of the ZnO QD/graphene/PET multilayer was approximately 80%. High-resolution transmission electron microscopy images showed that the ZnO QDs were distributed along the circumferences of the surfaces on the graphene layers. Current–voltage and current–time measurements on the UV photodetector after bending at 300 K exhibited the ON/OFF switching states and stability resulting from the light-induced conductivity of the flexible graphene layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号