首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anna Ponzio  Wlodzmierz Blasiak 《Fuel》2009,88(6):1127-1134
In this investigation, single coal particles (pellets) were combusted in highly preheated oxidants (873-1273 K) with oxygen concentrations ranging from 0% to 100%, using a small scale‘ batch reactor. In base of the experimental results, the influence of oxygen concentration and oxidizer temperature on total mass conversion, the release of fuel nitrogen and the fraction of fuel nitrogen that is oxidized to NOx, is discussed. For oxygen concentration 5-21%, the rate of the thermochemical conversion was shown to be almost independent oxygen concentration when oxidant temperatures of 1073-1273 K were used. The opposite was true for an oxidant temperature of 873 K. Thus there appears to be an oxidant temperature above which devolatilisation is controlled by convective heat transfer rather than reaction. Further it was shown that the release of fuel nitrogen was promoted by an increased oxygen concentration (from 5% to 21% at 1273 K) and an increase of oxidant temperature (from 1073 K to 1273 K at 21% oxygen). An estimate of the devolatilisation of nitrogen from the measured pellet temperature indicated that the devolatilisation of nitrogen is significantly delayed with respect to other components. In fact, during the very initial part of the thermochemical conversion, most released nitrogen appeared to follow the route via char rather than via devolatilisation. Favorable conditions for NO reduction thanks to a prompt devolatilisation contemporarily to a release of fuel nitrogen via the char route was believed to be one of the explanation for the evidenced low ratios between NOx emissions and fuel nitrogen released, particularly in the beginning of the experiment. The fact that the amount of released fuel nitrogen that is oxidized to NOx was shown to decrease with increasing oxidant temperatures from 1073 K to 1273 K supports this interpretation, though a higher temperature of the oxidant creates higher devolatilisation rates.  相似文献   

2.
Two Chinese coals, added with two types of sulfur capture sorbents, were combusted in a drop tube furnace to investigate effect of reaction temperature on sulfur removal during coal combustion. Limestone was used as sorbent and mixed with coal physically for sulfur removal. In addition, another sorbent, calcium acetate, synthesized from natural limestone, was also used for in situ removal of sulfur; it was impregnated into raw coals before combustion. The first series of experiments were carried out in the furnace having downside temperature of 1173 K (the upper side of furnace was at 1573 K). The results proved that calcium acetate captured more sulfur than limestone. In order to understand the effect of reaction temperature on in situ sulfur removal of sorbents, the second series of experiments were carried out at the uniform furnace temperature ranged from 1373 to 1673 K. Moreover, the sulfur removal capability of ashes, taken from combustion of coal with sorbents in drop tube furnace, was studied at 1173 K using thermogravity. The calcium distribution in ashes was analyzed using a novel calcium-based compounds CCSEM category. The results indicated that at certain temperature, higher sulfur removal efficiency was obtained for calcium acetate than that for natural limestone, which is mainly due to the fine dispersion of calcium in impregnated coal so that a good contact was obtained between calcium and sulfur-containing coal particles; increasing the temperature lowered the sulfur removal capabilities of sorbents since the sorbents were captured by inherent aluminosilicate; the sulfur content in raw coal affects the utilization of sorbents significantly in coal combustion. In addition, ashes, rich in calcium, can adsorb SO2 at 1173 K; the sulfur removal efficiency of fly ash is at least the same as that of natural limestone.  相似文献   

3.
Jacob Brix 《Fuel》2010,89(11):3373-4289
The aim of the present investigation is to examine differences between O2/N2 and O2/CO2 atmospheres during devolatilization and char conversion of a bituminous coal at conditions covering temperatures between 1173 K and 1673 K and inlet oxygen concentrations between 5 and 28 vol.%. The experiments have been carried out in an electrically heated entrained flow reactor that is designed to simulate the conditions in a suspension fired boiler. Coal devolatilized in N2 and CO2 atmospheres provided similar results regarding char morphology, char N2-BET surface area and volatile yield. This strongly indicates that a shift from air to oxy-fuel combustion does not influence the devolatilization process significantly. Char combustion experiments yielded similar char conversion profiles when N2 was replaced with CO2 under conditions where combustion was primarily controlled by chemical kinetics. When char was burned at 1573 K and 1673 K a faster conversion was found in N2 suggesting that the lower molecular diffusion coefficient of O2 in CO2 lowers the char conversion rate when external mass transfer influences combustion. The reaction of char with CO2 was not observed to have an influence on char conversion rates at the applied experimental conditions.  相似文献   

4.
Pulverized coal injection (PCI) is employed in blast furnace tuyeres attempting to maximize the injection rate without increasing the amount of unburned char inside the stack of the blast furnace. When coal is injected with air through the injection lance, the resolidified char will burn in an atmosphere with a progressively lower oxygen content and higher CO2 concentration. In this study an experimental approach was followed to separate the combustion process into two distinct devolatilization and combustion steps. Initially coal was injected into a drop tube furnace (DTF) operating at 1300 °C in an atmosphere with a low oxygen concentration to ensure the combustion of volatiles and prevent the formation of soot. Then the char was refired into the DTF at the same temperature under two different atmospheres O2/N2 (typical combustion) and O2/CO2 (oxy-combustion) with the same oxygen concentration. Coal injection was also performed under a higher oxygen concentration in atmospheres typical for both combustion and oxy-combustion. The fuels tested comprised a petroleum coke and coals currently used for PCI injection ranging from high volatile to low volatile bituminous rank. Thermogravimetric analyses and microscopy techniques were used to establish the reactivity and appearance of the chars.  相似文献   

5.
Chemical-looping combustion (CLC) is a promising technology for CO2-capture for storage or reuse as a method to mitigate CO2 emissions from the use of fossil fuels. In a CLC system the oxygen carrier is of great importance. Environmentally sound and low cost materials seem to be preferable especially for CLC of solid fuels. The natural occurring ore ilmenite has already been the target of different studies in order to work out its feasibility as oxygen carrier for different fuels. The initial part of this work is a screening of five commercial available ilmenite minerals as oxygen carrier, crushed and sieved to 125–180 μm. The screening includes an examination of the sulfur released during the first heat up and the activation of the oxygen carrier, indicated by the fuel conversion using alternating reduction (syngas 50 vol.% CO in H2) and oxidation conditions (10 vol.% O2 in N2). The five first cycles were carried out at 850 °C to avoid initial agglomeration whereas the main activation cycles have been performed at 950 °C in a tubular quartz reactor under fluidized bed conditions. From these experiments it is concluded that rock ilmenites are preferable as oxygen carriers since they revealed an improved fuel conversion, although offering a higher sulfur content, which is released during the initial heat up.  相似文献   

6.
Jean-Philippe Laviolette 《Fuel》2011,90(9):2850-2857
The non-premixed combustion of C1-C4n-alkanes with air was investigated inside a bubbling fluidized bed of inert sand particles at intermediate temperatures: 923 K ? TB ? 1123 K. For ethane, propane and n-butane, combustion occurred mainly in the freeboard region at bed temperatures below T1 = 923 K. On the other hand, complete conversion occurred within 0.2 m of the injector at: T2 = 1073 K. For methane, the measured values of T1 and T2 were significantly higher at 1023 K and above 1123 K, respectively. The fluidized bed combustion was accurately modeled with first-order global kinetics and one PFR model to represent the main fluidized bed body. The measured global reaction rates for C2-C4n-alkanes were characterized by a uniform Arrhenius expression, while the global reaction rate for methane was significantly slower. Reactions in the injector region either led to significant conversion in that zone or an autoignition delay inside the main fluidized bed body. The conversion in the injector region increased with rising fluidized bed temperature and decreased with increasing jet velocity. To account for the promoting and inhibiting effects, an analogy was made with the concept of induction time: the PFR length (bi) of the injector region was correlated to the fluidized bed temperature and jet velocity using an Arrhenius expression. These results show that the conversion of C2-C4n-alkanes can be estimated with one set of critical bed temperatures and modeled with one Arrhenius kinetics expression.  相似文献   

7.
Low temperature pyrolysis and gasification has been investigated based on the chemical looping combustion (CLC), where insufficient amount of lattice oxygen was reacted with hydrocarbons. Metal oxides such as nickel oxide, iron oxide and titanium oxide were used as lattice oxygen source and were coated on silica gel or porous aluminum. Single column reactor was used for experiments and 36.1 mmol of polyethylene was dropped to the column whose temperature was ranged from 693 to 1073 K. For the pyrolysis, hydrogen yield was 100% of polyethylene contained hydrogen, while methane, CO and CO2 were minor products and almost half of the supplied carbon was deposited on the particle surface. On the other hand, for the steam gasification, 2-3 mol of the hydrogen was generated from 1 mol of carbon and almost no carbon deposition was observed. It is found that no wax and heavy tar was observed in the exhaust. Therefore, the lattice oxygen was able to be applied to the low temperature gasification of hydrocarbons.  相似文献   

8.
Nickel catalysts supported on CeO2 were prepared and evaluated in aqueous-phase reforming of glycerol. Three different methodologies of synthesis were used: wet impregnation, co-precipitation and combustion, and the catalysts were characterized by chemical composition, textural analysis, crystalline structure and reducibility. The reaction was carried out in a batch reactor with solution of 1 and 10 wt.% glycerol, at 523 and 543 K. A maximum glycerol conversion of 30% was achieved by the catalyst prepared by combustion at 543 K using solution 1% glycerol. In the gas phase, the molar fraction of H2 was always higher than 70% and formation of CH4 was very low (< 1%). The increase in glycerol concentration decreases the conversion and H2 formation.  相似文献   

9.
H. Haykiri-Acma 《Fuel》2007,86(3):373-380
Coal/biomass blends were prepared in the lignite/biomass ratios of 98:2, 96:4, 94:6, 92:8, 90:10, and 80:20 using a Turkish lignite from Elbistan region and hazelnut shell. Co-pyrolysis characteristics were investigated in a thermogravimetric analyzer (TGA) from ambient to 1173 K with a linear heating rate of 20 K/min under dynamic nitrogen flow of 40 ml/min. Char products from pyrolysis were investigated using XRD and SEM techniques. Devolatilization yields from the blends were evaluated in a synergistic manner and found that the overall yields for all the blends exceeded the expected yields which calculated from the additive behavior. As regards to devolatilization characteristics in given temperature intervals, it was concluded that there was significant synergy between 400 and 600 K, whereas additive behavior took place beyond 600 K. No evidence of synergy was observed in the activation energies. It was also concluded that the addition of hazelnut shell into lignite contributed to the sulfur fixing potential of char in the form of CaS and CaSO4.  相似文献   

10.
Thailand is well-endowed with renewable energy resources. In Thailand, rice husk, a by-product of the rice-milling process and one of the most potentially sustainable cultivated biomasses, has an annual energy equivalent of 6.6 × 10GJ. Using rice husk alone, however, can be problematic, particularly if there is a deficit during the off-season. Coal, the most abundant fossil fuel, has thus been considered an appropriate supplementary fuel. This paper describes the combustion characteristics of co-firing rice husk with bituminous coal in a 120 kWth-capacity cyclonic fluidized-bed combustor (ψ-FBC), and how excess air ratios and fuel blends impacted emissions and combustion efficiency (Ec). Overall, excess air and blending ratios did not have tremendous effects on Ec, easily achieving >97%. Radial temperature profiles revealed that vortex combustion prevailed along the combustor walls. Concurring with axial temperature profiles, axial O2 profiles suggested that the combustion was confined chiefly to regions under the vortex ring. Despite massive CO production in the lower section, CO emissions were satisfactory (range 60-260 ppm, at 6% O2). Due to the high bed temperatures, NOx appeared rather high (260-416 ppm, at 6% O2). Not only were NOx emissions affected by coal ratio, it were also highly reliable on the operating conditions. SO2 emissions varied directly, but not proportionally, with the sulfur content of the fuel mixture.  相似文献   

11.
Chemical-looping combustion is a promising technology that concentrates CO2 and separates it during combustion. In this study, both the carbon deposition and sulfur evolution in the reduction of a calcium sulfate (CaSO4) oxygen carrier with a typical syngas were investigated using thermodynamic simulations. The effects of reaction temperature, operating pressure and the oxygen ratio number (defined in this paper) on the amount of deposited carbon and released sulfurous gases are discussed. A reaction temperature from 750 to 950 °C, an operating pressure from 1 to 15 bars and an oxygen ratio number between 0.4 and 0.8 were determined to be the most favorable operating conditions. In addition, the amounts of released sulfurous gases were found to be largely dependent on the partial pressures of H2 and CO based on the thermo-gravimetric analyzer (TGA) tests. When the partial pressure of H2 or CO was above 40 kPa, the release of sulfurous gases could be prevented in the reaction between CaSO4 and syngas, even if the reaction temperature was as high as 1000 °C. The XRD profiles of the products also demonstrated that the mole fraction of CaS in the products increased gradually with an increasing partial pressure of H2 or CO, until the products were almost pure CaS.  相似文献   

12.
Non-catalytic direct conversion of methane to valuable products was studied using non-equilibrium pulsed discharge under the conditions of ambient temperature and atmospheric pressure. Acetylene was produced with 95% selectivity and 52% methane conversion. An addition of oxygen, carbon dioxide and steam contributed significantly to suppress the carbon deposition and produced carbon monoxide as well as acetylene. Methane conversion increased with an increase in the pulse frequency while the product selectivity remained almost constant. The selectivity depended on the composition of the feed gas. The effect of the partial pressure of oxygen was examined, and it was found that the pulsed discharge would be able to produce synthesis gas by partial oxidation of methane. Carbon monoxide selectivity of 79% with methane conversion of 76% was obtained under the conditions of CH4/O2=25/25 cm3 min−1, gap distance of 10 mm and the frequency of 45 Hz.  相似文献   

13.
A. Abad  T. Mattisson  A. Lyngfelt  M. Rydén 《Fuel》2006,85(9):1174-1185
Chemical-looping combustion (CLC) is a method for the combustion of fuel gas with inherent separation of carbon dioxide. This technique involves the use of two interconnected reactors. A solid oxygen carrier reacts with the oxygen in air in the air reactor and is then transferred to the fuel reactor, where the fuel gas is oxidized to carbon dioxide and water by the oxygen carrier. Fuel gas and air are never mixed and pure CO2 can easily be obtained from the flue gas exit. The oxygen carrier is recycled between both reactors in a regenerative process. This paper presents the results from a continuously operating laboratory CLC unit, consisting of two interconnected fluidized beds. The feasibility of the use of a manganese-based oxygen carrier supported on magnesium stabilized zirconia was tested in this work. Natural gas or syngas was used as fuel in the fuel reactor. Fuel flow and air flow was varied, the thermal power was between 100 and 300 W, and the air ratio was between 1.1 and 5.0. Tests were performed at four temperatures: 1073, 1123, 1173 and 1223 K. The prototype was successfully operated at all conditions with no signs of agglomeration or deactivation of the oxygen carrier. The same particles were used during 70 h of combustion and the mass loss was 0.038% per hour, although the main quantity was lost in the first hour of operation. In the combustion tests with natural gas, methane was detected in the exit flue gases, while CO and H2 were maintained at low concentrations. Higher temperature or lower fuel flows increases the combustion efficiency, which ranged from 0.88 to 0.99. On the other hand, the combustion of syngas was complete for all experimental conditions, with no CO or H2 present in the gas from the fuel reactor.  相似文献   

14.
In this study sulfur pyrolysis behavior of two Chinese high sulfur coals and their treated coal samples was investigated by Py-MS at a heating rate of 5 °C/min from room temperature to 1025 °C under hydrogen, helium and 2% O2-He. It is found that the internal and external hydrogen do not show hydrogenation ability at temperature below 400 °C, due to no H2S formation at this temperature region for all the coal samples. At temperature higher than 400 °C, not only the indigenous hydrogen but also indigenous oxygen can react with sulfur-containing radicals to form H2S or SO2. The evolution of H2S and SO2 displays the same profiles in pyrolysis of ZY pyrite-free coal under He, further revealing that after the breakage of C-S bond in the organic sulfur structure in coal to form sulfur-containing radicals, which can equally react with indigenous hydrogen and oxygen. The similar tendency between evolution of CO2 and SO2 and the same ending temperature also shows that not only C-S but also C-C bond can be broken in pyrolysis of ZY coals under 2% O2-He atmosphere. However, unlike SO2 evolution, CO2 emission increases in the temperature ranging from 500 °C to 800 °C in LZ raw and deashed coals, implying the breakage of C-C bond at high temperature, which might be related to their low coal rank and high pyrite content.  相似文献   

15.
In the frame of generation IV gas-cooled fast reactor (GFR), the cladding materials currently considered is a SiC/SiC-based composite with a pyrocarbon interphase and a β-SiC coating on the surface to close the porosity (noted β-SiC-SiC/PyC/SiC). These elements are subjected to temperatures going from 1300 to 1500 K in nominal operating conditions to 1900-2300 K in accidental conditions. The coolant gas considered is helium pressurized at 7 MPa.After a thermodynamic study carried out on the oxidation of β-SiC under helium and low oxygen partial pressures, an experimental approach was made on β-SiC-SiC/PyC/SiC composites under active oxidation conditions (1400 ≤ T ≤ 2300 K; 0.2 ≤ pO2 ≤ 2 Pa). This study follows two preceding studies carried out on two polytypes of SiC: α (Part 1) and β (Part 2) under the same conditions. In these studies, the influence of the crystalline structure on the transition temperature between passive and active oxidation and on the mass loss rate was discussed.The experimental study allows to determine the oxidation rates in incidental and accidental conditions under pO2 = 0.2 and 2 Pa. The variation of the mass loss rates according to the temperature for β-SiC-SiC/PyC/SiC oxidized under pO2 = 0.2 and 2 Pa shows the existence of three domains in the zone of active oxidation. These tests also show the weak impact of the oxygen partial pressure on the mass loss rate of the material in this range of pressure for temperatures lower than 2070 K. On the other hand, beyond 2070 K, an increase of the mass loss rate leading to important damage of the material has been observed, at lower temperature under pO2 = 0.2 Pa than under pO2 = 2 Pa. This variation was associated to the effect of the oxygen partial pressure on the sublimation temperature of SiC. Similar experiments were performed on pre-oxidized samples and on the face without CVD β-SiC coating and both the results are close to the ones obtained for the face with the CVD β-SiC layer.  相似文献   

16.
The study of the combustion process carried out in an oxygen-enriched atmosphere in a circulating fluidized bed (CFB) combustor is presented. The experiments were focused on fuel behavior in the conditions of increased oxygen concentration, at a different temperature and a different fuel load in the combustion chamber. The tests were performed in a laboratory-scale CFB combustor. Brown coal was used as the fuel. The values of variable parameters were in the following ranges: the oxygen concentration in the delivered stream of gas substrates (mixtures of O2 + N2 and O2 + CO2): 21 ÷ 60%; the combustor's temperature: 973 ÷ 1133 K; the mass of fuel portions: 4 ÷ 8 g. Based on the obtained data, carbon, sulfur and nitrogen conversion ratios were calculated.  相似文献   

17.
Dongjo Lee  Sam S. Yoon 《Fuel》2010,89(7):1447-1460
The group combustion of interacting heptanes liquid droplets are numerically simulated by solving two dimensional unsteady laminar Navier-Stokes equations. The unsteady computations for the time-varying vaporization of multi-droplets are carried out with parameters of the Reynolds number (Re), the separation distance (S) between the droplets, and the oxygen mole-fraction. The n-heptane droplets initially at T0 = 300 K are in hot air of 10 atm at Tg = 1250 K. Multi-droplets are staggeringly arranged at a separation distance ranging from 4 to 15 droplet radius. The Reynolds number, based on the droplet diameter and free stream velocity, is varied from Re = 10 to 50. The oxygen mole-fraction of the surrounding air is changed from 15% to 90%. The time variations of the flame structure, the combustion characteristics, and the burning rates are presented and discussed. These results indicated that the staggered arrangement of the multi-droplets induced combustion characteristics distinct from those of a single droplet. The burning rate of the interacting droplets in the staggered arrangement exhibited a relatively strong dependence on the Re, S, and oxygen mole-fraction. The burning rate of the interacting multi-droplets, non-dimensionalized by that of a single droplet, was found as a function of S and Re.  相似文献   

18.
Jacob Brix 《Fuel》2011,90(6):2224-2239
The aim of this investigation has been to model combustion under suspension fired conditions in O2/N2 and O2/CO2 mixtures. Experiments used for model validation have been carried out in an electrically heated Entrained Flow Reactor (EFR) at temperatures between 1173 K and 1673 K with inlet O2 concentrations between 5 and 28 vol.%. The COal COmbustion MOdel, COCOMO, includes the three char morphologies: cenospheric char, network char and dense char each divided between six discrete particle sizes. Both combustion and gasification with CO2 are accounted for and reaction rates include thermal char deactivation, which was found to be important for combustion at high reactor temperatures and high O2 concentrations. COCOMO show in general good agreement with experimental char conversion profiles at conditions covering zone I-III. From the experimental profiles no effect of CO2 gasification on char conversion has been found. COCOMO does however suggest that CO2 gasification in oxy-fuel combustion at low O2 concentrations can account for as much as 70% of the overall char consumption rate during combustion in zone III.  相似文献   

19.
Aik Chong Lua  Jincai Su 《Carbon》2006,44(14):2964-2972
Carbon membranes were prepared by carbonisation of Kapton® polyimide at different temperatures under vacuum and nitrogen flow. Pore structure development of the membranes during carbonisation was studied. Carbonisation temperature was critical in the modification of membrane structure. At the same temperature, the carbon membranes fabricated under nitrogen atmosphere had higher gas permeances than those fabricated under vacuum. During heat treatment, the value of d-spacing for the carbon membranes decreased with increasing temperature, however, vacuum and nitrogen atmosphere had different influences on the changes in the d-spacing. CO2 adsorption showed that the carbon membranes prepared at 1273 K under vacuum had the highest micropore volume whilst the membranes prepared at 1073 K under vacuum had the highest characteristic adsorption energy. N2 adsorption showed that the samples obtained at 873 K under vacuum had the highest nitrogen uptake. Mesopores were deemed to be connected through micropores and narrow channels between meso- and/or micropores were supposedly present. The micropores predominantly controlled the transport properties of the carbon membranes. The membrane samples obtained at 1173 K under vacuum yielded ideal separation factors of 558.27, 60.87, 19.69 and 138.53 for He/N2, CO2/N2, O2/N2 and CO2/CH4, respectively, with permeances of 7.26, 0.79, 0.26, 0.13 and 0.006 mol/(m2 s Pa) for He, CO2, O2, N2 and CH4, respectively.  相似文献   

20.
Yuying Shu 《Carbon》2005,43(7):1517-1532
A series of nickel, molybdenum, and tungsten metal phosphides deposited on a carbon black support (Ni2P/C, MoP/C, and WP/C) were synthesized by means of temperature-programmed reduction. The samples were characterized by BET surface area, CO uptake, X-ray diffraction (XRD), elemental analysis, and extended X-ray absorption fine structure (EXAFS) measurements. The activity of these catalysts was measured at 613 K and 3.1 MPa in a three-phase, packed-bed reactor for hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) with a model liquid feed containing 500 ppm sulfur as 4,6-dimethyldibenzothiophene (4,6-DMDBT), 3000 ppm sulfur as dimethyl disulfide, and 200 ppm nitrogen as quinoline. The Ni2P/C catalyst was found to exhibit the best hydroprocessing performance based on equal CO chemisorption sites (70 μmol) loaded in the reactor. An optimum Ni loading for HDS and HDN activity was found as 1.656 mmol g−1 (11.0 wt.% Ni2P) which gave an HDS conversion of 99% and an HDN conversion of 100% at a molar space velocity of 0.88 h−1. These were much higher than those of a commercial Ni-Mo-S/γ-Al2O3 catalyst which gave an HDS conversion of 68% and an HDN conversion of 94%, and a previously reported best Ni2P/SiO2 catalyst which gave an HDS conversion of 76% and an HDN conversion of 92%. The use of carbon instead of silica as a support gave rise to other differences, which included smaller particle size, higher CO uptake, lessened retention of P on the support, and reduced sulfur deposition. The stability of the 11.0 wt.% Ni2P/C catalyst was also excellent with no deactivation observed over 110 h of time on stream. The activity and stability of the Ni2P/C catalyst were affected by the phosphorous content, both reaching a maximum with an initial Ni/P ratio of 1/2. EXAFS and elemental analysis of the spent samples indicated the formation of a surface phosphosulfide phase on the Ni2P, which was beneficial for hydrotreating activity, while the bulk structure of the phosphides was maintained during the course of reaction as revealed from the XRD patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号