首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The characteristics of oxy-coal combustion for a swirl burner with a specially designed preheating chamber are studied numerically. In order to increase the accuracy in the prediction of flame temperature and igni- tion position, eddy dissipation concept (EDC) model with a skeletal chemical reaction mechanism was adopted to describe the combustion of volatile matter. Simulation was conducted under six oxidant stream conditions with dif- ferent OjN2/CO2 molar ratios: 21/79/0, 30/70/0, 50/50/0, 21/0/79, 30/0/70 and 50/0/50. Results showed that 02 en- richment in the primary oxidant stream is in favor of combustion stabilization, acceleration of ignition and increase of maximum flame temperature, while the full substitution of N2 by CO2 in the oxidant stream delays ignition and decreases the maximum flame temperature. However, the overall flow field and flame shapes in these cases are very similar at the same flow rate of the primary oxidant stream. Combustion characteristics of the air-coal is similar to that of the oxy-coal with 30% 02 and 70% CO2 in the oxidant stream, indicating that the rear condition is suitable for retrofitting an air-coal fired boiler to an oxy-coal one. The swirl burner with a specially designed preheating chamber can increase flame temperature, accelerate ignition and enhance burning intensity of pulverized coal under oxy-coal combustion. Also, qualitative experimental validation indicated the burner can reduce the overall NOx emission under certain 02 enrichment and oxy-coal combustion conditions against the air-coal combustion.  相似文献   

2.
S.P. Khare  A.Z. Farida  B. Moghtaderi 《Fuel》2008,87(7):1042-1049
Combustion tests were undertaken in a vertical pilot-scale furnace (1.2 MWt) at the IHI test facility in Aioi, Japan, to compare the performance of an air fired swirl burner retrofitted to oxy fired pf coal combustion with the oxy fired feed conditions established to match the furnace heat transfer for the air fired case. A turn down test at a reduced load was also conducted to study the impact on flame stability and furnace performance.Experimental results include gas temperature measurements using pyrometry to infer the ignition location of the flames, flue gas composition analysis, and residence time and carbon burnout. Theoretical computational fluid dynamics (CFD) modelling studies using the Fluent 6.2 code were made to infer mechanisms for flame ignition changes.Previous research has identified that differences in the gas compositions of air and oxy systems increase particle ignition times and reduce flame propagation velocity in laminar systems. The current study also suggests changes in jet aerodynamics, due to burner primary and secondary velocity differences (and hence the momentum flux ratio of the flows) also influence flame shape and type.For the oxy fuel retrofit considered, the higher momentum flux of the primary stream of the oxy-fuel burner causes the predicted ignition to be delayed and occur further distant from the burner nozzle, with the difference being accentuated at low load. However, the study was limited to experimental flames being all Type-0 (low swirl with no internal recirculation), and therefore future work consider higher swirl flames (with internal recirculation) more common in industry.  相似文献   

3.
牛芳 《洁净煤技术》2020,26(2):73-77
煤粉高效低氮燃烧技术是煤炭高效利用领域持续关注的热点。煤粉燃烧器作为煤粉锅炉的核心设备,研究适合多煤种、宽负荷条件的煤粉燃烧器设计原理及技术至关重要。逆喷射流稳燃机理大都应用在航空发动机和燃气轮机领域,在煤粉燃烧领域应用极少。前人大量研究了预燃室对旋流燃烧器流场特性的影响,但鲜见预燃室对逆喷旋流燃烧器流场影响的相关研究。为了探究预燃室对逆喷旋流煤粉燃烧器流场特性的影响规律,笔者针对一款20 t/h逆喷旋流燃烧器,基于等温模化原理建立冷态燃烧器模型,利用热线风速仪和飘带法进行了流场测试和分析,结果表明:预燃室的存在不改变逆喷旋流煤粉燃烧器回流区环形的形状,但在逆喷旋流煤粉燃烧器内形成一个有利于煤粉着火的轴向速度低和湍流强度大的回流区。在X/D<1.3区域内,由于圆锥形预燃室对气流的挤压作用,预燃室的存在对回流区的面积起到抑制作用;在1.32.3区域内,预燃室对燃烧器内部流场的作用减弱,可忽略不计。在预燃室的作用下,回流区最宽处的直径从0.97D降至0.86D,最大相对回流率位置从截面X/D=1后移到截面X/D=1.6处,相对回流率从1.17减小至0.99。预燃室的存在对二次风区域内的轴向平均速度和湍流度分布规律影响较大。无预燃室工况下,在X/D<0.6区域内,速度和湍流度均出现峰值,在X/D>1.6区域内峰值消失,内外二次风完全混合;有预燃室工况下,在X/D<0.6区域速度沿着径向方向逐渐增大,湍流度沿着径向方向逐渐减小,在X/D>1.6区域,速度和湍流度沿着径向方向分布均匀。预燃室的存在有利于回流区煤粉的稳定燃烧,工程应用中起到煤粉迅速着火以及难燃煤稳定燃烧的作用。另外预燃室壁面气流速度较大,刚性强,避免预燃室壁面超温或结焦现象的发生,延长了煤粉燃烧器无故障运行时间和整体的使用寿命。  相似文献   

4.
A finite‐volume numerical model for computer simulation of pulverized solid‐fuel combustion in furnaces with axisymmetric‐geometry swirl burner is presented. The simulation model is based on the k ? ε single phase turbulence model, considering the presence of the dispersed solid phase via additional source terms in the gas phase equations. The dispersed phase is treated by the particle source in cell (PSIC) method. Solid fuel particle devolatilization, homogenous and heterogeneous chemical reaction processes are modelled via a global combustion model. The radiative heat transfer equation is also resolved using the finite volume method. The numerical simulation code is validated by comparing computational and experimental results of pulverized coal in an experimental furnace equipped with a swirl burner. It is shown that the developed numerical code can successfully predict the flow field and flame structure including swirl effects and can therefore be used for the design and optimization of pulverized solid‐fuel swirl burners.  相似文献   

5.
In this paper, a comprehensive computational fluid dynamics (CFD) modelling study was undertaken by integrating the combustion of pulverized dry lignite in several combustion environments. Four different cases were investigated: an air-fired and three different oxy-fuel combustion environments (25 vol.% O2 concentration (OF25), 27 vol.% O2 concentration (OF27), and 29 vol.% O2 concentration (OF29) were considered. The chemical reactions (devolatilization and char burnout), convective and radiative heat transfer, fluid and particle flow fields (homogenous and heterogenous processes), and turbulent models were employed in 3-D hybrid unstructured grid CFD simulations. The available experimental results from a lab-scale 100 KW firing lignite unit (Chalmer’s furnace) were selected for the validation of these simulations. The aerodynamic effect of primary and secondary registers of the burner was included through swirl at the burner inlet in order to achieve the flame stability inside the furnace. Validation and comparison of all the combustion cases with the experimental data were made by using the temperature distribution profiles and species concentration (O2, CO2, and H2O) profiles at the most intense combustion locations of the furnace. The overall visualization of the flame temperature distributions and oxygen concentrations were presented in the upper part of the furnace. The numerical results showed that the flame temperature distributions and O2 consumptions of the OF25 case were approximately similar to the reference combustion case. In contrast, in the OF27 and OF29 combustion cases, the flame temperatures were higher and more confined in the closest region of the burner exit plane. This was a result of the quick consumption of oxygen that led to improve the ignition conditions in the latter combustion cases. Therefore, it is concluded that the resident time, stoichiometry, and recycled flue gas rates are relevant parameters to optimize the design of oxy-fuel furnaces. The findings showed reasonable agreement with the qualitative and quantitative measurements of temperature distribution profiles and species concentration profiles at the most intense combustion locations inside the furnace. These numerical results can provide useful information towards future modelling of the behaviour of pulverized brown coal in a large-scale oxy-fuel furnace/boiler in order to optimize the burner’s and combustor’s design.  相似文献   

6.
张鑫  陈隆 《洁净煤技术》2020,26(2):66-72
高速煤粉燃烧器火焰喷射速度高达60~200 m/s,炉膛内火焰较长,对流换热比例提高,使得炉膛内温度分布均匀,没有传统低速煤粉燃烧器火焰短,炉膛内局部过热和结焦等缺点。笔者以14 MW高速煤粉燃烧器为研究对象,采用数值模拟的方法,研究旋流强度、二次风温度等关键参数对燃烧器内煤粉燃烧的影响,针对燃烧器内煤粉燃烧特点进行结构优化设计。对旋流强度研究结果表明,当旋流强度S=2.2、2.8、3.2及3.7时,燃烧器内回流区形状变化不大,从一次风喷口开始到旋流叶片位置结束,回流区环绕一次风管;最大回流量在一次风喷口附近,距离一次风喷口越远,回流量越小;旋流强度对一次风喷口附近最大回流量影响不大,喷口附近最大回流量均在0.45 kg/s左右,当距喷口超过一定距离(L/H<0.35)时,旋流强度对回流量的影响开始变得明显,表现为旋流强度越大,回流区末端回流量越大,回流区末端回流量最大为0.30 kg/s,最小为0.17 kg/s。研究燃烧器喷口处燃烧状态表明,喷口处火焰旋流强度为0.10~0.28,与入口旋流强度正相关,火焰喷射速度150 m/s,为中等旋流强度的高速旋流火焰;喷口中心区可燃性组分富集,缺氧,燃料和氧气分层分布。当旋流强度提高,喷口中心区可燃性组分浓度降低,CO浓度从11%降低到10%,H2浓度从1.65%降低到1.40%,焦炭浓度从0. 14%降低到0. 11%,喷口边缘O2浓度从13%降低到10%。旋流强度S=3.2和S=3.7时可燃组分和氧气浓度分布变化较小,说明旋流强度提高对燃烧的影响减弱。考察0、100和200℃下二次风温度对燃烧的影响,结果表明,当二次风温度提高,煤粉在燃烧器内的反应时间有所降低,从0.15 s降低到0.11 s,但燃烧器内的煤粉碳转化率提高20%,达到65%。对燃烧器结构进行优化,加入中心风,对比中心风直流和旋流与不加中心风3种状态,结果表明,加入旋流中心风和直流中心风后喷口中心区半径r≤75 mm范围内可燃组分浓度降低,采用直流时由于气流刚性较强,喷口中心区氧气浓度升高,采用旋流中心风对中心区氧浓度影响弱,对可燃组分浓度降低效果优于直流中心风。  相似文献   

7.
Combustion simulations were conducted to investigate the parameters controlling the formation of unburned carbon in fly ash from coal reburning in a coal-fired boiler. Unburned carbon (UBC or Loss on ignition, LOI) was generally caused by particles flowing through fuel-rich regions and/or spending insufficient residence time in the furnace. LOI contributions by each individual coal source were identified and quantified. The LOI from the main burners was found to depend mainly on the availability of combustion air in the burner zone. However, the LOI from the reburning jets depended on both the amount of air in the reburning jets and the available over-fire air (OFA) downstream. Moving some air from the lower burners to the upper burners to compensate for the shorter residence time was found to significantly reduce the overall LOI without adverse impacts on the NOx emissions in this study.  相似文献   

8.
流化床内煤着火特性实验研究   总被引:4,自引:0,他引:4  
为了对当前大量应用的带有床下启动燃烧器 CFB锅炉的启动运行提供指导 ,以及为从事循环流化床技术和煤燃烧理论研究提供参考 ,在电加热的小型流化床燃烧系统上 ,采用热烟气炉下点火的方式来研究煤粒在流化床内的燃烧特性 .测定了福建龙岩无烟煤的着火特性 ,分析了粒径、床温对着火点的影响 .并提出了煤颗粒在流化床内着火点测定的实验规范 .  相似文献   

9.
Pulverized coal generally features wide particle-size distributions (PSD). How to set an initial PSD in coal combustion simulation remains an open question. To answer this, the Gaussian-quadrature theory was applied to provide a discrete reconstruction of the PSD described by Rosin-Rammler and Upper-Limit functions. From the perspective of the moments of PSD, a theoretical analysis was conducted for mass, momentum, and energy exchange terms between gas and particle phases in pulverized coal jet flame. The analysis presented that the first, the second and the third moments of PSD were the most important to capture the flame ignition behavior. The large eddy simulations showed that the proposed method with two or more particle sizes could provide good predictions of flame ignition distances. And Sauter mean diameter (D32) could represent the complete PSD when predicting the ignition behavior of pulverized coal jet flame.  相似文献   

10.
J.P. Smart  G.S. Riley 《Fuel》2011,90(8):2812-2816
Traditional wisdom has lead to the design of a boiler being dictated by its fuel. Typically, lignite requires a large boiler to accommodate the moisture content and ash behaviour and anthracite needs a design with a long residence time to allow for complete combustion. Thus the result is that different boiler designs are required for different fuel types. This work demonstrates that it is possible to fire under oxy-fuel firing conditions different fuels in potentially a single combustion environment. In the present work a short series of scoping tests firing Russian semi-anthracite under air and oxy-fuel firing conditions on the RWEnpower Combustion Test Facility (CTF) have been performed and result compared to firing a South African bituminous coal. An IFRF swirl burner was used. The purpose behind this work was to determine whether oxy-fuel firing offered the potential for firing a wider range of coal qualities on a swirl stabilised burner than is conventional showing that stable combustion can be achieved with semi-anthracite as with bituminous coal. In this short communication, it is shown that this is possible. Flame photographs of the Russian semi-anthracite coal fired on air and under oxy-fuel firing conditions at recycle ratios of 75%, 72% and 68% were taken. The air firing condition produced a non-luminous flame in the near burner region. For oxy-fuel firing at 75% recycle ratio, the flame is also non-luminous and more so that the air firing case. When the recycle ratio is reduced from 75% to 68% the flame becomes increasingly luminous and at 68% an intense flame was observed well anchored into the burner quarl. Radiative heat flux measurements were taken with the Russian semi-anthracite coal at 68% recycle ratio and compared to the South African bituminous coal at 68% recycle ratio and on air. In general the peak in radiative heat flux for the Russian semi-anthracite at 68% recycle ratio compared to the South African bituminous coal on air is slightly higher reflecting the effect of oxygen enrichment and the higher calorific value of the semi-anthracite. It can also be observed that the location of the peak in radiative heat flux with Russian semi-anthracite coal at 68% recycle is displaced downstream. In the near burner region, the radiation intensity is lower for the Russian semi-anthracite at 68% recycle ratio compare to South African bituminous coal at 68% recycle ratio and on air reflecting the lower (but not insignificant) intensity of combustion in this region for the Russian semi-anthracite coal.  相似文献   

11.
通过计算流体力学(CFD)软件—FLUENT研究了富氧浓度对预热阶段梭式窑内换热特性的影响。结果表明火焰最高温度随富氧浓度的增加非线性增大。梭式窑内的富氧燃烧可以减少高温高速烟气射流直接对窑墙的冲刷。由于烟气不能充分冲刷烧嘴附近区域和烟气射流顶部回流的影响,窑炉断面出现温差。为使窑内温度尽量均匀,预热阶段也可通过控制燃料量,点燃全部烧嘴。富氧助燃可以使窑内换热增强,减小窑内温差。  相似文献   

12.
Numerical studies of the slagging characteristics under different operational conditions in a 300 MW down-fired boiler were carried out using slagging models coupled with gas-solid two phase flow and combustion models. Combined with the real operating conditions; comparative and detailed analysis on the slagging position, extent, and causes is presented. The results show that the serious slagging is mainly on the side walls of the lower furnace. Because of the more rapid expansion of the flue gas under the higher temperature, the flue gas in the furnace center makes the flue gas on both sides deflect and flow to the side walls; and the pulverized-coal flame impinges on the side walls. This results in the slagging on the side walls. Under off-design operating conditions, such as stopping some burners, the local flow field is asymmetric and impinges on the local arch burner, front and rear wall regions where the stopped burners are located. It leads to slight slagging on the arch burner regions and the front and rear wall regions of the lower furnace. Based on the investigation, it has been found that the serious slagging on the side walls can be effectively alleviated by cutting off the burners close to the side walls, reducing boiler load and burning low slagging-tendency coals.  相似文献   

13.
易海清 《中氮肥》2003,(2):45-47
针对35t/h煤粉锅炉燃烧低挥发分无烟煤时,存在燃烧不稳定,锅炉热效率低,不能在额定负荷下长周期稳定运行等问题,采取增加炉膛高度,增加一组空气预热器,改进燃烧器等措施进行改造,改造后炉况明显好转。  相似文献   

14.
A three-component particle-dynamics anemometry is used to measure, in the near-burner region, the characteristics of gas-particle two phase flows with two swirl burners with different primary air flow types, on a gas-particle two phase test facility. One burner is the radial bias combustion swirl pulverized coal burner whose primary air is non-swirl, and the other is the swirl burner whose primary air is swirl. With the former one, particle volume fluxes, particle volume fractions and particle number concentrations are bigger near the edge of central recirculation zone, and the particle volume fractions and the particle number concentrations are also bigger in the central recirculation zone. With the latter one, the particle volume fluxes and particle number concentrations are less near the edge of the central recirculation zone, and they are bigger in the wall zone. The influence of gas-particle flow characteristics on combustion has been analyzed, and the theory of air-surrounding-coal combustion is given.  相似文献   

15.
The tangentially fired furnaces have evolved because of rapid contacting of the fuel and air flame impingement, and the increased particulate residence time due to vortex motion. Tangentially fired units have a good record in being able to meet emission regulation on NOx as a result of their flexibility and the ability to control the heat release rate. Yet, the flow inside the tangentially fired furnaces is known to have its own peculiar aerodynamics; it is quite complicated in such a way that it is not easy to reach a satisfactory model to describe it. The drawbacks with the traditional tangentially fired furnaces are burner velocities. Low velocities are not suitable for fuels having high volatile contents, as ignition occurs in or near the burner causing slugging and distortion problems. Very high velocities on the other hand are undesirable as fuel particles can centrifuge out of the main combustion zone as unburnt carbon. The test boiler used in this work has tangential over fire registers located in the side walls, which are directed to form an imaginary circle at the centre to aid the suspension burning. The vortex formed by these jets, is then induced by the under grate air in reaching the higher levels in the furnace. In the test furnace, the fuel is not coming along with the tangential over fire air, but enters the furnace through the bagasse spreaders and carried by the distributor air. The combustion of bagasse and the propagation of the flame within the furnace are influenced by the tangential over fire air and the under grate air. In the present work, the furnace is simulated and analyzed for the propagation of flame and the patterns at various heights of the furnace supported by the measurements.  相似文献   

16.
中国煤粉工业锅炉借鉴油气锅炉和德国煤粉工业锅炉技术理念,经历立项研发、中试验证和工业示范,系统技术逐步成熟,自2010年起,实现规模化工业应用。煤粉工业锅炉系统具有高热效率、低烟气污染物排放等优点,有效带动了燃煤工业锅炉产业发展。笔者论述了煤粉工业锅炉技术与发展,重点介绍了煤粉工业锅炉的关键技术,并对主要技术进行对比,分析了煤粉工业锅炉的工业应用情况,最后提出了煤粉工业锅炉技术发展方向。煤粉工业锅炉系统由燃料煤粉生产、储供、油气点火、燃烧、锅炉本体、烟气净化以及自动化控制等系统构成。锅炉热效率大于91%,烟气污染物达到国家超低排放标准,系统技术符合国家煤炭清洁利用方向。燃料煤粉生产采用一步法工艺,通过强化流动性和安全措施,现可实现最大为1 000 m^3安全存储量。锅炉供粉采用气动活化、无脉动给料及高速引射流浓相输送技术,已实现输送阻力低于20 kPa,粉风固气比大于2.5 kg/m^3,供料精度在±3.0%以内,最大供料量为5 t/h的浓相供料技术与装备,广泛应用于锅炉供料系统。供料量在2.5 t/h,供料精度在±2.0%和±1.0%以内的第三代和第四代供料器也分别开展了工业验证和样机的试制工作,并取得了阶段性的成果。煤粉燃烧器采用逆喷式回流式结构,设计工作依据其结构特征,通过模拟气流扩展角、回流区域范围、回流量、旋流强度以及温度和速度场等研究开展,再经过实际工程应用,进一步验证优化设计参数,最终实现燃烧器的逐级放大。天然气/煤粉双燃料燃烧器具有便捷切换和快速着火功能。风冷燃烧器采用内外双级旋流供风燃烧技术,具有点火迅速、燃烧稳定、燃烧效率高和初始NOx排放低等优点。随着煤粉锅炉系统测控技术向智能化、网络化和集成化方向发展。锅炉烟气脱硫除尘采用NGD高倍率灰钙循环脱硫技术,具有占地小,运行成本低等特点,在低钙硫摩尔比下,系统脱硫和除尘效率分别达到90%和99.95%以上。低温炭基预氧化脱硝耦合NGD协同烟气净化技术具有工艺简单,耗水少,废物资源再利用,无二次污染产生等优点,更加适合于煤粉工业锅炉的烟气净化。煤粉工业锅炉在发展历程中通过关键技术和装备优化升级,在大型化、模块化和系列化方向已取得成效,在节能性、环保性和经济性等方面较常规工业锅炉具有显著优势,技术已达到世界先进水平。未来随着国家能源结构优化,天然气/煤粉锅炉、低氮燃烧、生物质复合半焦粉及协同化烟气净化等技术的开发与成熟,煤粉工业锅炉技术将成为煤炭清洁燃烧利用主要技术之一。  相似文献   

17.
A mathematical model and a computing technique are proposed for the motion, heat transfer, and combustion in the initial region of a pulverized-coal jet injected through a burner into the furnace volume. In the simulation, the dispersed phase is divided into two kinds of particles: particles that enter the region being studied from the portion of the furnace volume that is external with respect to the selected zone and the burner-jet particles. The continual approach and the assumption of equilibrium with respect to the gas phase are used to describe the motion of particles of the first kind, and the Lagrangian approach taking into account the dynamic and thermal lag of particles is used to simulate the processes in the medium of particles of the second kind. The model also describes the evolution of volatile substances and burnup of the coke residue. The results obtained using this numerical model make it possible to analyze in detail the combustion of a pulverized coal-air jet in the area near the burner. The degree of detail achieved allows one to make effective decisions for organization of an optimal jet aerodynamics to reduce nitric-oxide formation. Translated from Fizika Goreniya i Vzryva, Vol. 33, No. 1, pp. 51–59, January–February, 1997  相似文献   

18.
煤粉锅炉炉膛燃烧一维数学模型的研究   总被引:1,自引:0,他引:1  
为了有效地进行直流煤粉多相流动与燃烧数值模拟,实现煤粉低NOx燃烧,本文在连续介质模型的框架中建立了综合考虑气—固两相流流动、燃烧与传热的直流煤粉燃烧一维数学模型。应用这一模型对一维煤粉炉炉膛内煤粉燃烧和气体燃烧的数值计算表明,该模型可快速有效地用于模拟直流煤粉多相流动与燃烧过程,给出炉内温度、NOx分布等主要参数。  相似文献   

19.
逆向射流燃烧技术是可同时适用于燃气和燃煤领域的高效低污染燃烧技术,逆喷结构和射流流速比决定了其流场特性。笔者综述了逆向射流燃烧技术在燃气和燃煤领域的发展历史、研究现状和发展趋势。在燃气领域,逆向射流主要起稳定火焰作用,具有良好的燃料-空气混合条件,形成一个近似均匀的热流场,避免燃烧过程中出现局部热点,但目前仅为一种为燃气轮机和飞机发动机提供的探索性技术,工程应用还需克服燃料和空气在一个狭小空间里的流场合理控制以及从简化装置到工程放大等问题。在燃煤领域,对于煤粉燃烧器,逆向射流可形成一个可控组分、大小、形状和位置的回流区,且将煤粉直接送进回流区,还可控制煤粉在回流区内的停留时间,该技术与传统火焰稳定方式相比,火焰稳定能力更强、停留时间更长、污染更低,更适用于低阶煤的高效燃烧,目前,逆向射流燃烧技术耦合其他稳燃、低氮技术为煤粉高效清洁利用发展提供了新方向,且已有实际工程应用,但对于其机理研究不够深入,限制了其进一步发展与推广。对于电站锅炉,部分一次风或燃尽风逆向偏转射入炉内,可缓解四角切圆燃烧方式下炉膛出口烟气的烟速和烟温偏差,目前主要是燃尽风反切的工业应用,但如何合理控制燃尽风反切角度、反切动量以及反切层数等关键问题还需进一步研究。  相似文献   

20.
Prediction of pulverized coal ignition behavior in a 40 MW tangentially fired commercial boiler is studied. Pulverized coal combustion simulation is performed considering radiation properties of particles. Coal devolatilization and char combustion are modeled and the first order spherical harmonic approximation is used to model the radiative transfer equation. To confirm the accuracy of the simulation method, the results are confirmed by available operating data, design data, and the ignition image in the boiler whose inside is observed by the developed high temperature resistant CCD video camera system. The work indicates that the simulation method can be applied to commercial boilers and predict the ignition behavior with considering not only coal properties but also boiler operating conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号