首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experimental study of the performance and emission characteristics of diesel engine using direct and indirect injection combustion systems are carried out on a same model of two diesel engines fuelled with diesel and the blend of diesel and Chinese pistache biodiesel. The results show that the NOx emissions from the indirect injection combustion system (ICS) fuelled with diesel are reduced by around two thirds, compared to that from direct injection combustion system (DCS). Smoke emissions from the engine using ICS are all significantly lower than that of DCS, reduced by 70% for diesel; by 50-60% for the blend. The brake thermal efficiencies (BTEs) reduced by 8-10%, compared to that of DCS; the fuel consumptions increased by around 7-9%. It is also found that carbon monoxide (CO) emissions are reduced when the engine run at engine high power outputs, so are the hydrocarbon (HC) emissions from ICS at the peak power outputs. It is found that, when fuelled with the blend, the effects of ICS to the performance and emissions of diesel engine are very similar to that of running with diesel. For ICS engine fuelled with diesel and the blend fuel, the BSFCs for the blend are around 5% higher; the BTEs are around 2-4% lower; the reductions of NOx from the blend fuel are 5.1-8.4% on average for the ICS; the reductions of smoke from the blend fuel are 26.8-31.7% on average for the ICS. CO emissions are around a half lower; and HC emissions are around one fifth lower, compared to that of fuelling with diesel. Comparing to that of DCS fuelled with diesel, using ICS fuelled with the blended fuel has much lower emissions. NOx emissions decreased by 65.6% and 66.1%; smoke emissions decreased by 75.7% and 80.2%; CO emissions decreased by 55.8% and 46.0%; HC emissions decreased by 24.9% and 18.9%; with the BSFCs around 14.6-14.9% higher and the BTEs around 9.7-10.0% lower.  相似文献   

2.
This study discusses the performance and combustion characteristics of a direct injection (DI) diesel engine fueled with biodiesels such as waste (frying) palm oil methyl ester (WPOME) and canola oil methyl ester (COME). In order to determine the performance and combustion characteristics, the experiments were conducted at the constant engine speed mode (1500 rpm) under the full load condition of the engine. The results indicated that when the test engine was fueled with WPOME or COME, the engine performance slightly weakened; the combustion characteristics slightly changed when compared to petroleum based diesel fuel (PBDF). The biodiesels caused reductions in carbon monoxide (CO), unburned hydrocarbon (HC) emissions and smoke opacity, but they caused to increases in nitrogen oxides (NOx) emissions.  相似文献   

3.
Jie Zhang  Kebin He  Xiaoyan Shi 《Fuel》2011,90(6):2089-2097
Biodiesel is an alternative fuel with growing usage in the transportation sector. To compare biodiesel and petroleum diesel effects on particle emissions, engine dynamometer tests were performed on a Euro II engine with three test fuels: petroleum diesel (D), biodiesel made from soy bean oil (BS) and biodiesel made from waste cooking oil (BW). PM2.5 samples were collected on Teflon and quartz filters with a Model 130 High-Flow Impactor (MSP Corp). Organic (OC) and elemental (EC) carbon fractions of PM2.5 were quantified by a thermal-optical reflectance analysis method and particle size distributions were measured with an electrical low pressure impactor (ELPI). In addition, the gaseous pollutants were measured by an AMA4000 (AVL Corp). The biodiesels were found to produce 19-37% less and 23-133% more PM2.5 compared to the petroleum diesel at higher and lower engine loads respectively. On the basis of the carbon analysis results, the biodiesel application increased the PM2.5 OC emissions by 12-190% and decreased the PM2.5 EC emissions by 53-80%, depending on the fuel and engine operation parameters. Therefore OC/EC was increased by three to eight times with biodiesel application. The geometrical mean diameter of particles from biodiesels and petroleum diesel had consistent trends with load and speed transition. In all the conditions, there is a shift of the particles towards smaller geometric mean diameter for the biodiesel made from waste oil.  相似文献   

4.
H.E. Saleh 《Fuel》2008,87(13-14):3031-3039
This paper investigates the effect of variation in LPG composition on emissions and performance characteristics in a dual fuel engine run on diesel fuel and five gaseous fuel of LPG with different composition. To quantify the best LPG composition for dual fuel operation especially in order to improve the exhaust emissions quality while maintaining high thermal efficiency comparable to a conventional diesel engine, a two-cylinder, naturally aspirated, four-stroke, DI diesel engine converted to run as pilot-injected dual fuel engine. The tests and data collection were performed under various conditions of load at constant engine speed. From the results, it is observed that the exhaust emissions and fuel conversion efficiency of the dual fuel engine are found to be affected when different LPG composition is used as higher butane content lead to lower NOx levels while higher propane content reduces CO levels. Fuel #3 (70% propane, 30% butane) with mass fraction 40% substitution of the diesel fuel was the best LPG composition in the dual fuel operation except that at part loads. Also, tests were made for fuel #3-diesel blend in the dual fuel operation at part loads to improve the engine performances and exhaust emissions by using the Exhaust Gas Recirculation (EGR) method.  相似文献   

5.
P. McCarthy  S. Moazzem 《Fuel》2011,90(6):2147-2157
The performance and emissions of an internal combustion engine (ICE) engine fuelled with two bio-diesels are experimentally measured and analysed according to ISO 8178 standard and compared with that of the petroleum diesel. Two types of bio-diesel, type A and type B (defined in Section 1) with their blends of B5, B10, B20, B50 and B100 are tested and analysed. This study found that the performance of both bio-diesel fuels reduces with increasing blend ratio, with a torque decrease of 5% for both bio-diesels, and a fuel consumption increase of 7-10%. This can be attributed to the lower energy content of bio-diesel when compared with petroleum diesel. For both the bio-diesels, some emissions were found to be higher than petroleum diesel, while some were lower. Nitrogen Oxide (NOx) emissions decreased by 14% for bio-diesel A, but increased by 17% for bio-diesel B. Carbon monoxides (CO) emissions were significantly reduced for both bio-diesel A and B, with reductions of 58% and 27% respectively. Hydrocarbon (HC) emissions were found to increase with increasing blend ratio for both bio-diesels, with an increase of 10% for bio-diesel A and 80% for bio-diesel B. Lastly, Carbon dioxides (CO2) emissions were found to increase, with an increase of 6% for bio-diesel A and 18% for bio-diesel B. The study clearly found that each of the bio-diesels has different scale of effect on ICE performance and emissions and hence, it is essential to test bio-diesels before it can be recommended for mass scale production and for commercial use in ICE. However, the study indicates that the two major pollutant gas emissions are generally reduced when using bio-diesel, therefore bio-diesel can be considered to be a more environmentally friendly, secure and renewable approach of obtaining energy in the long run.  相似文献   

6.
M. Mani  G. Nagarajan 《Fuel》2010,89(8):1826-1832
Environmental degradation and depleting oil reserves are matters of great concern around the globe. Developing countries like India depend heavily on oil import of about 125 Mt per annum (7:1 diesel/gasoline). Diesel being the main transport fuel in India, finding a suitable alternative to diesel is an urgent need. In this context, waste plastic solid is currently receiving renewed interest. Waste plastic oil is suitable for compression ignition engines and more attention is focused in India because of its potential to generate large-scale employment and relatively low environmental degradation. The present investigation was to study the effect of cooled exhaust gas recirculation (EGR) on four stroke, single cylinder, direct injection (DI) diesel engine using 100% waste plastic oil. Experimental results showed higher oxides of nitrogen emissions when fueled with waste plastic oil without EGR. NOx emissions were reduced when the engine was operated with cooled EGR. The EGR level was optimized as 20% based on significant reduction in NOx emissions, minimum possible smoke, CO, HC emissions and comparable brake thermal efficiency. Smoke emissions of waste plastic oil were higher at all loads. Combustion parameters were found to be comparable with and without EGR. Compression ignition engines run on waste plastic oil are found to emit higher oxides of nitrogen.  相似文献   

7.
Hu Chen  Jianxin Wang  Shijin Shuai  Wenmiao Chen 《Fuel》2008,87(15-16):3462-3468
Vegetable methyl ester was added in ethanol–diesel fuel to prevent separation of ethanol from diesel in this study. The ethanol blend proportion can be increased to 30% in volume by adding the vegetable methyl ester. Engine performance and emissions characteristics of the fuel blends were investigated on a diesel engine and compared with those of diesel fuel. Experimental results show that the torque of the engine is decreased by 6%–7% for every 10% (by volume) ethanol added to the diesel fuel without modification on the engine. Brake specific fuel consumption (BSFC) increases with the addition of oxygen from ethanol but equivalent brake specific fuel consumption (EBSFC) of oxygenated fuels is at the same level of that of diesel. Smoke and particulate matter (PM) emissions decrease significantly with the increase of oxygen content in the fuel. However, PM reduction is less significant than smoke reduction. In addition, PM components are affected by the oxygenated fuel. When blended fuels are used, nitrogen oxides (NOx) emissions are almost the same as or slightly higher than the NOx emissions when diesel fuel is used. Hydrocarbon (HC) is apparently decreased when the engine was fueled with ethanol–ester–diesel blends. Fuelling the engine with oxygenated diesel fuels showed increased carbon monoxide (CO) emissions at low and medium loads, but reduced CO emissions at high and full loads, when compared to pure diesel fuel.  相似文献   

8.
Vegetable oils and animal fats are applicable as fuels in standard diesel engines after having adapted the fuel system for electronically controlled dual fuel regime oil/fat-fossil diesel. In this contribution, performance and emission characteristics of the engines running on rapeseed oil, lard, or chicken fat are given and compared to those of fossil diesel and fatty acid methyl esters. The results of engine tests of these fuels show a decrease in maximum power and maximum torque in comparison to fossil diesel due to a lower energy content of triacylglycerols. These values are influenced also by a type of the engine used at testing. When compared to fossil diesel, the opacity of oil/fat based fuels is higher for an engine with lower injection pressures while it is lower for an engine with higher injection pressures. The level of both controlled and uncontrolled emissions is low for all tested biofuels and is low also for the reference fossil diesel. The results of performance and emission tests for rapeseed oil containing 3 and 6 vol.% of anhydrous ethanol are comparable to those obtained for pure oil. In this paper, practical experiences based on long-term operation of adapted vehicle fleet fuelled with oil/fat-fossil diesel are mentioned.  相似文献   

9.
《Fuel》2006,85(14-15):2187-2194
In this present investigation deccan hemp oil, a non-edible vegetable oil is selected for the test on a diesel engine and its suitability as an alternate fuel is examined. The viscosity of deccan hemp oil is reduced first by blending with diesel in 25/75%, 50/50%, 75/25%, 100/0% on volume basis, then analyzed and compared with diesel. Further blends are heated and effect of viscosity on temperature was studied. The performance and emission characteristics of blends are evaluated at variable loads of 0.37, 0.92, 1.48, 2.03, 2.58, 3.13 and 3.68 kW at a constant rated speed of 1500 rpm and results are compared with diesel. The thermal efficiency, brake specific fuel consumption (BSFC), and brake specific energy consumption (BSEC) are well comparable with diesel, and emissions are a little higher for 25% and 50% blends. At rated load, smoke, carbon monoxide (CO), and unburnt hydrocarbon (HC) emissions of 50% blend are higher compared with diesel by 51.74%, 71.42% and 33.3%, respectively. For ascertaining the validity of results obtained, pure deccan hemp oil results are compared with results of jatropha and pongamia oil for similar works available in the literature and were well comparable. From investigation it has been established that, up to 25% of blend of deccan hemp oil without heating and up to 50% blend with preheating can be substituted for diesel engine without any engine modification.  相似文献   

10.
《Fuel》2007,86(12-13):1772-1780
In this study, wasted cooking oil from restaurants was used to produce neat (pure) biodiesel through transesterification, and this converted biodiesel was then used to prepare biodiesel/diesel blends. The goal of this study was to compare the trace formation from the exhaust tail gas of a diesel engine when operated using the different fuel type: neat biodiesel, biodiesel/diesel blends, and normal diesel fuels. B20 produced the lowest CO concentration for all engine speeds. B50 produced higher CO2 than other fuels for all engine speeds, except at 2000 rpm where B20 gave the highest. The biodiesel and biodiesel/diesel blend fuels produced higher NOx for various engine speeds as expected. SO2 formation not only showed an increasing trend with increased engine speed but also showed an increasing trend as the percentage of diesel increased in the fuels. Among the collected data, the PM concentrations from B100 engines were higher than from other fuelled engines for the tested engine speed and most biodiesel-contained fuels produced higher PM than the pure diesel fuel did. Overall, we may conclude that B20 and B50 are the optimum fuel blends. The species of trace formation in the biodiesel-contained fuelled engine exhaust were mainly CnH2n+2, DEP, and DPS. For the B100, B80, B50, and D fuelled engines, C15H32 was the dominant species for all engine speeds, while squalene (C30H50) was the dominant for B20. DEP was only observed in the B100, B80, and B50 fuelled engines in this study. The D fuelled engine showed a higher DPS production for engine speeds higher than 1200 rpm.  相似文献   

11.
Numerical analysis of injection characteristics using biodiesel fuel   总被引:1,自引:1,他引:1  
Breda Kegl   《Fuel》2006,85(17-18):2377-2387
This paper deals with numerical analysis of injection process using biodiesel/mineral diesel fuel blends with the aim to search for the potentials to reduce engine harmful emissions. The considered fuels are neat biodiesel from rapeseed oil and its blends with mineral diesel D2. For the numerical analysis a one-dimensional mathematical model is employed. In order to model accurately the investigated fuels, the employed empirical expressions for their properties are determined by experiments. To verify the mathematical model and the empirical expressions, experiments and numerical simulation are run on a mechanical control diesel fuel injection M system at several operating regimes. Injection process at many different operating regimes and using several fuel blends are then investigated numerically. Attention is focused on the injection characteristics, especially on fuelling, fuelling at some stage of injection, mean injection rate, mean injection pressure, injection delay and injection timing, which influence the most important engine characteristics. The analysis of the obtained results reveals that, while keeping engine performance within acceptable limits, harmful emissions can be reduced by adjusting appropriately pump injection timing in dependence on the biodiesel content. This prediction is also confirmed experimentally.  相似文献   

12.
An experimental investigation is conducted to evaluate the use of sunflower and cottonseed oil methyl esters (bio-diesels) of Greek origin as supplements in the diesel fuel at blend ratios of 10/90 and 20/80, in a fully instrumented, six-cylinder, turbocharged and after-cooled, direct injection (DI), Mercedes-Benz, mini-bus diesel engine installed at the authors’ laboratory. The tests are conducted using each of the above fuel blends, with the engine working at two speeds and three loads. Fuel consumption, exhaust smokiness and exhaust regulated gas emissions such as nitrogen oxides, carbon monoxide and total unburned hydrocarbons are measured. The differences in the measured performance and exhaust emissions from the baseline operation of the engine, i.e., when working with neat diesel fuel, and the two bio-diesels are determined and compared. Theoretical aspects of diesel engine combustion with the differing physical and chemical properties of these blends, aid the correct interpretation of the observed engine behavior.  相似文献   

13.
In this paper fuels, based on various DME to diesel ratios are investigated. Physical and chemical properties of DME and diesel display mutual solubility at any ratio. The vapor pressure of DME/diesel blends is lower than that of pure DME at the same temperatures and it decreases with an increase of diesel mass fraction in blends, which is beneficial to the elimination of vapor lock in the fuel supply system on CI engines. Performance, emission and other features of three kinds of DME/diesel blend fuels and diesels are evaluated in a four-cylinder test engine. By taking relative advantages of DME and diesel, the DME/diesel blends could achieve satisfactory properties in lubricity and atomization, which contributed to improvements in spray and combustion characteristics. Simultaneously, smoke emission could be reduced significantly with a little penalty on CO and HC emissions for DME/diesel blended engine at high loads, in comparison to diesel engine. NOx emissions of the engine powered by DME/diesel blends are decreased somewhat. Moreover, the power output would be improved a little and NOx emission could be reduced further if the fuel supply advance angle is retarded appropriately.  相似文献   

14.
Exhaust emissions and their effects on the environment and human health, such as mutagenicity of particulate matter (PM) and ozone-forming potential, must be considered when using an alternative fuel. In the present work, a test engine and two agricultural tractors ran on rapeseed oil methyl ester (biodiesel) or conventional diesel fuel as well as blends thereof. The objective was to detect any disproportionately positive or negative effects depending on blend levels, because conventional diesel fuel and biodiesel can be blended in every ratio. Generally, emissions of regulated compounds changed linearly with the blend level. The known positive and negative effects of biodiesel varied accordingly. Overall, no optimal blend was found. Increasing biodiesel content of the fuel caused a linear increase in benzene emissions in the agricultural five-mode engine test, an effect that may be explained from previous studies on precombustion chemistry. In using the test engine, it was found that PM from biodiesel significantly reduced mutagenic potential compared with that from diesel fuel, although in this work PM masses were found to be reproducibly higher for biodiesel from rapeseed oil compared with conventional diesel fuel. Ozone precursors increased 10–30% when using biodiesel compared with conventional diesel fuel. Emissions of aldehydes and alkenes are mainly responsible for this effect. N2O emissions increased when using a catalytic converter.  相似文献   

15.
Microemulsification and blending are two viscosity-modifying techniques of vegetable oils for direct use with diesel engine. In this study, alcohol blends are mixtures of ethanol, diesel, and palm-oil biodiesel while microemulsion biofuels are thermodynamically stable, clear, and single-phase mixtures of diesel, palm oil, and ethanol stabilized by surfactants and cosurfactants. Although there are many studies on biofuels lately, there is limited research on using biodiesel as a surfactant in microemulsion formulations and applied on engine performance at different engine loads. Therefore, the objectives are to investigate phase stability and fuel properties of formulated biofuels (various blends and microemulsions), to determine the engine performance at different engine loads (no load, and from 0.5 to 2.0 kW), and to estimate laboratory-scale cost of the selected biofuels compared to diesel and biodiesel. The results showed that phase stability and fuel properties of selected microemulsion biofuels are comparable to diesel and biodiesel. These microemulsion biofuels can be applied to the diesel engine at different loads while diesel-ethanol blends and palm-oil-biodiesel-ethanol blends cannot be. It was found that the energy efficiencies of the system using microemulsion biofuels were slightly lower than the average energy efficiency of diesel engine. From this study, it can be summarized that microemulsion biofuels can be formulated using palm-oil biodiesel (palm-oil methyl ester) as a bio-based surfactant and they can be considered as environmentally-friendly alternatives to diesel and biodiesel. However, cost considerations showed that the raw materials should be locally available to reduce additional costs of microemulsion biofuels.  相似文献   

16.
K. Varatharajan  M. Cheralathan 《Fuel》2011,90(8):2721-2725
Biodiesel offers cleaner combustion over conventional diesel fuel including reduced particulate matter, carbon monoxide and unburned hydrocarbon emissions. However, several studies point to slight increase in NOx emissions (about 10%) for biodiesel fuel compared with conventional diesel fuel. Use of antioxidant additives is one of the most cost-effective ways to mitigate the formation of prompt NOx. In this study, the effect of antioxidant additives on NOx emissions in a jatropha methyl ester fuelled direct injection diesel engine have been investigated experimentally and compared. A survey of literature regarding the causes of biodiesel NOx effect and control strategies is presented. The antioxidant additives L-ascorbic acid, α tocopherol acetate, butylated hydroxytoluene, p-phenylenediamine and ethylenediamine were tested on computerised Kirloskar-make 4 stroke water cooled single cylinder diesel engine of 4.4 kW rated power. Results showed that antioxidants considered in the present study are effective in controlling the NOx emissions of biodiesel fuelled diesel engines. A 0.025%-m concentration of p-phenylenediamine additive was optimal as NOx levels were substantially reduced in the whole load range in comparison with neat biodiesel. However, hydrocarbon and CO emissions were found to have increased by the addition of antioxidants.  相似文献   

17.
Aviation fuel JP-5 and biodiesel on a diesel engine   总被引:1,自引:0,他引:1  
Naval aviation turbine fuel, JP-5, has been accepted as alternative to JP-8 in the frame of the Single Fuel Policy. This has resulted in some ongoing research on JP-5 fuel for its application as a naval single fuel. The necessity to cope with the environmental problems identified in the process of implementing the Single Fuel Policy as well as the strict requirements of modern diesel engines has lead to the need of improved single fuel quality. The development of biomass derived substitutes for diesel, such as biodiesel, is a possible attractive solution. The present paper is an effort to evaluate JP-5 along with diesel and biodiesel for use in a diesel engine. These fuels were used alone and in various mixture fractions in a single cylinder stationary diesel engine in order to evaluate their performance under defined operating conditions of the engine. JP-5 reduced both the NOx and particulate matter emissions as compared to the reference fuel case. Biodiesel significantly lowered particulate emissions, but slightly increased NOx emissions and fuel consumption. Fuel sulfur content has an undesired effect on smoke opacity. Biodiesel increased the fuel consumption when added to petroleum fuels and the increase was larger at high engine loads. Diesel and JP-5 showed similar fuel consumption, with diesel consumption increasing at high engine loads. Ternary blends showed similar behavior. The blends with lower biodiesel content showed lower volumetric fuel consumption.  相似文献   

18.
D.H. Qi  H. Chen  Y.ZH. Bian 《Fuel》2010,89(5):958-964
This work aims on the efficient use of ethanol-biodiesel-water micro-emulsions in a diesel engine. A single cylinder direct injection diesel engine is tested using neat biodiesel and the micro-emulsions as fuels under variable operating conditions. The results indicate that, compared with biodiesel, the peak cylinder pressure of the micro-emulsions is almost identical, and the peak pressure rise rate and peak heat release rate are higher at medium and high engine loads. At low engine loads, those of the micro-emulsions are lower. The start of combustion is later for the micro-emulsions than for biodiesel. For the micro-emulsions, there is slightly higher brake specific fuel consumption (BSFC), while lower brake specific energy consumption (BSEC). Drastic reduction in smoke is observed with the micro-emulsions at high engine loads. Nitrogen oxide (NOx) emissions are found slightly lower under all rang of engine load for the micro-emulsions. But carbon monoxide (CO) and hydrocarbon (HC) emissions are slightly higher for the micro-emulsions than that for biodiesel at low and medium engine loads.  相似文献   

19.
This work investigates the impacts on fuel consumption and exhaust emissions of a diesel power generator operating with biodiesel. Fuel blends with 5%, 20%, 35%, 50%, and 85% of soybean biodiesel in diesel oil, and fuel blends containing 5%, 20%, and 35% of castor oil biodiesel in diesel oil were tested, varying engine load from 9.6 to 35.7 kW. Specific fuel consumption (SFC) and the exhaust concentrations of carbon dioxide (CO2), carbon monoxide (CO), and hydrocarbons (HC) were evaluated. The engine was kept with its original settings for diesel oil operation. The results showed increased fuel consumption with higher biodiesel concentration in the fuel. Soybean biodiesel blends showed lower fuel consumption than castor biodiesel blends at a given concentration. At low and moderate loads, CO emission was increased by nearly 40% and over 80% when fuel blends containing 35% of castor oil biodiesel or soybean biodiesel were used, respectively, in comparison with diesel oil. With the load power of 9.6 kW, the use of fuel blends containing 20% of castor oil biodiesel or soybean biodiesel increased HC emissions by 16% and 18%, respectively, in comparison with diesel oil. Exhaust CO2 concentration did not change significantly, showing differences lower than ±3% of the values recorded for diesel oil operation, irrespective of biodiesel type, concentration and the load applied. The results demonstrate that optimization of fuel injection system is required for proper engine operation with biodiesel.  相似文献   

20.
O?uzhan Do?an 《Fuel》2011,90(7):2467-9430
Nitrogen oxides and smoke emissions are the most significant emissions for the diesel engines. Especially, fuels containing high-level oxygen content can have potential to reduce smoke emissions significantly. The aim of the present study is to evaluate the influence of n-butanol/diesel fuel blends (as an oxygenation additive for the diesel fuel) on engine performance and exhaust emissions in a small diesel engine. For this aim five-test fuels, B5 (contains 5% n-butanol and 95% diesel fuel in volume basis), B10, B15, B20 and neat diesel fuel, were prepared to test in a diesel engine. Tests were performed in a single cylinder, four stroke, unmodified, and naturally aspirated DI high speed diesel engine at constant engine speed (2600 rpm) and four different engine loads by using five-test fuels. The experimental test results showed that smoke opacity, nitrogen oxides, and carbon monoxide emissions reduced while hydrocarbon emissions increased with the increasing n-butanol content in the fuel blends. In addition, there is an increase in the brake specific fuel consumption and in the brake thermal efficiency with increasing n-butanol content in fuel blends. Also, exhaust gas temperature decreased with increasing n-butanol content in the fuel blends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号