首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The compositional dependence of microwave dielectric properties has been investigated in the (1 − x )(Na1/2Nd1/2)TiO3− x Nd(Mg1/2Ti1/2)O3 (NNT-NMT) system. The addition of NMT results in significant improvement in the quality factor and the temperature coefficient of frequency, but gradually decreases the dielectric constant from ∼100 for pure NNT to ∼25 for pure NMT. The single perovskite phase is observed with various { hkl } superlattice reflections over the entire compositional range. The increasing tendency of peak splitting with increasing x at some perovskite reflections strongly suggests that the crystal structure of the system changes to lower symmetry structures. This is confirmed using infrared reflectivity spectra. The superlattice reflections related to structural deviation become more predominant as the composition reaches pure NMT. Particularly, {111} superlattice reflections are believed to be associated with the 1:1 cation ordering and responsible for the observed abrupt increase in quality factor at x > 0.7.  相似文献   

2.
Microwave dielectric properties and far-infrared reflectivity spectra of the 0.3CaTiO3–0.7Li(1/2)−3 x Sm(1/2)+ x TiO3 ceramics were investigated as a function of Sm3+ substitution (0.0 ≤ x ≤ 0.12). The dielectric constant decreased as the Sm3+ substitution increased. The Q × f value increased, up to a solid-solution limit at x = 0.11, because of the change of vibration modes between the A-site cation and the TiO6 octahedron, and then decreased because of the formation of a secondary phase (Sm2Ti2O7). On the analysis of the far-infrared reflectivity spectra, in the 50–4000 cm−1 range, the change of the dielectric loss and dielectric constant could be explained by the intrinsic factor.  相似文献   

3.
The crystal structure and microwave dielectric properties of the (1 − x ) La(Zn1/2Ti1/2)O3· x SrTiO3 and (1 − x )La(Zn1/2Ti1/2)O3· x CaTiO3 system were investigated. X-ray powder diffraction showed that cation ordering disappeared at x > 0.3 for both systems. However, infrared spectra demonstrated that short-range cation ordering could exist at x = 0.4. Permittivity and the temperature coefficient of the resonant frequency (τf) of both systems exhibited nonmonotonic variations with composition. Both systems exhibited a τf of zero at the same composition of x = 0.5 although the τf of SrTiO3 was about two times larger than that of CaTiO3. The behavior of the permittivity and τf were described by the tilting of oxygen octahedra and cation ordering. The relation between τf and cation ordering of La(Zn1/2Ti1/2)O3 was discussed in conjunction with the experimental results on metal halides. It is suggested that cation ordering induced a negative τf and suppressed the increase of permittivity for compositions between x = 0 to x = 0.5 for (1 − x )La(Zn1/2Ti1/2)O3· x SrTiO3 and (1 − x )La(Zn1/2Ti1/2)O3· x CaTiO3 systems.  相似文献   

4.
The microwave dielectric properties and microstructures of compounds in the solid solution series x BaTiO3–(1− x )La(Mg1/2Ti1/2)O3 (BTLMT) have been investigated. The structural phase transitions that occur as a function of x have been studied and are related to changes in the dielectric properties. For compounds where x ≤ 0.1, X-ray diffraction (XRD) showed evidence of 1:1 ordering between Mg and Ti cations. For x ≤ 0.3, XRD and electron diffraction revealed that compounds were tilted in both antiphase and in-phase. However, for 0.3 < x < 0.7, only antiphase tilting was present. The temperature coefficient of resonant frequency (τf) vs the relative permittivity (ɛr) was linear until x = 0.5 at which point in the solid solution the transition to a nontilted structure resulted in nonlinear behavior. τf values close to zero (−2 ppm/°C) were achieved at x = 0.5 (ɛr∼ 60), which had a quality factor ( Q · f o) of 9600 GHz.  相似文献   

5.
Both 1:2 and 1:1 ordered structures form in the perovskite solid solutions of La-substituted BMT Ba1− x La x (Mg(1+ x )/3Ta(2− x )/3)O3, sintered at 1600°C. The 1:2 ordered structure exists in the composition range 0.0 ≤ x ≤ 0.12, while that of 1:1 ordered structure exists in a wider composition range 0.04 ≤ x ≤ 1.0. Two ordered phases coexist in 0.04 ≤ x ≤ 0.12. High-resolution micrographs indicate that 1:2 and 1:1 ordered domains coexist in one grain. The ordering parameter of 1:2 phase decreases with x , yet that of 1:1 phase increases with x . Both increase with soak time. Variations in ordering are discussed in terms of cation occupancy and crystal chemistry. The quality factor increases with x , reaches a maximum, then decreases with x . The dielectric constant increases with x first, and levels off.  相似文献   

6.
7.
Dense (1− x )Ca(Mg1/3Ta2/3)O3/ x CaTiO3 ceramics (0.1≤ x ≤0.9) were prepared by a solid-state reaction process. The crystal structures and microstructures were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Single-phase solid solutions were obtained in the entire composition range. Long-range 1:2 ordering of B-site cations and oxygen octahedra tilting lead to the monoclinic symmetry with space group P 21/ c for x =0.1. For x above 0.1, the long-range ordering was destroyed and the crystal structure became the orthorhombic with space group Pbnm . The microwave dielectric properties showed a strong dependence on the composition and microstructure. The dielectric constant and temperature coefficient of resonant frequency increased nonlinearly as the CaTiO3 content increased while the Qf values decreased approximately linearly. Good combination of microwave dielectric properties was obtained at x =0.45, where ɛr=45.1, Qf =34 800 GHz, and τf=17.4 ppm/°C.  相似文献   

8.
The microwave dielectric properties of the (1− x )CaTiO3– x Ca(Zn1/3Nb2/3)O3 ceramic system have been investigated. The ceramic samples sintered at 1300°–1450°C for 4 h in air exhibit orthorhombic pervoskite and form a complete solid solution for different x value. When the x value increased from 0.2 to 0.8, the permittivity ɛr decreased from 115 to 42, the unloaded quality factor Q × f increased from 5030 to 13 030 GHz, and the temperature coefficient τf decreased from 336 to −28 ppm/°C. When x =0.7, the best combination of dielectric properties, a near zero temperature coefficient of resonant frequency of τf∼−6 ppm/°C, Q × f ∼10 860 GHz and ɛr∼51 is obtained.  相似文献   

9.
The phase stabilities in the(1−x)Ba(Zn1/3Ta2/3)O3 (BZT)-xBaZrO3(BZ)system have been investigated using samples prepared by the mixed oxide method. The substitution of Zr4+destabilizes the 1:2 cation ordering in BZT and pro-motes the formation of a cubic, 1:1 ordered structure with a doubled perovskite repeat. The homogeneity range of the 1:1 phase extends from x = 0.04 to approximately x = 0.25; substitutions beyond this range stabilize a disordered perovskite. The limits of stability of the 1:1 ordering coin-cide with compositions previously found to exhibit anoma-lies in their dielectric loss. The range of homogeneity is consistent with a "random layer" model for the 1:1 ordered "Ba{β';1/2β1/2}O3" structure. In this model the B× positions are assumed to be occupied exclusively by Ta5+, and the b× sites by a random distribution of Zn2+, Zr4+, and the remaining Ta 5+ cations. The validity of the model, where the ordered solid solutions can be represented by Ba{[Zn2− y /3Ta(1−2 y )/3Zr y ]1/2[Ta]1/2}O3(y =2x)was con-firmed by Rietveld refinements conducted using data col-lected with a synchrotron X-ray source.  相似文献   

10.
Cation ordering and domain boundaries in perovskite Ca[(Mg1/3Ta2/3)1− x Ti x ]O3 ( x =0.1, 0.2, 0.3) microwave dielectric ceramics were investigated by high-resolution transmission electron microscopy (HRTEM) and Rietveld analysis. The variation of ordering structure with Ti substitution was revealed together with the formation mechanism of ordering domains. When x =0.1, the ceramics were composed of 1:2 and 1:1 ordered domains and a disordered matrix. The 1:2 cation ordering could still exist until x =0.2 but the 1:1 ordering disappeared. Neither 1:2 nor 1:1 cation ordering could exist at x =0.3. The space charge model was used to explain the cation ordering change from 1:2 to 1:1 and then to disorder. A comparison between the space charge model and random layer model was also conducted. HRTEM observations showed an antiphase boundary inclined to the (111) c plane with a projected displacement vector in the 〈001〉 c direction and ferroelastic domain boundaries parallel to the 〈100〉 c direction.  相似文献   

11.
Dielectric properties of the system (1 − x)(La1/2Na1/2)TiO3 x Ca(Fe1/2Nb1/2)O3, where 0.4 # x # 0.6, have been investigated at microwave frequencies. The temperature coefficient of resonant frequency (τf), nearly 0 ppm/°C, was realized at x = 0.58. These ceramics had perovskite structure and showed relatively low dielectric losses. A new dielectric material applicable to microwave devices having Q · f of 12000–14000 GHz and a dielectric constant (εr) of 59–60 has been obtained at 1300–1350°C for 5–15 h sintering.  相似文献   

12.
A narrow region of Zn-vacancy-containing cubic perovskites was formed in the (1− x )Ba3(ZnNb2)O9−( x )Ba3W2O9 system up to 2 mol% substitution ( x =0.02). The introduction of cation vacancies enhanced the stability of the 1:2 B-site ordered form of the structure, Ba(Zn1− x x )1/3(Nb1− x W x )2/3O3, which underwent an order–disorder transition at 1410°C, ∼35° higher than pure Ba(Zn1/3Nb2/3)O3. The Zn vacancies also accelerated the kinetics of the ordering reaction, and samples with x =0.006 comprised large ordered domains with a high lattice distortion ( c/a =1.226) after a 12 h anneal at 1300°C. The tungstate-containing solid solutions can be sintered to a high density at 1390°C, and the resultant ordered ceramics exhibit some of the highest microwave dielectric Q factors ( Q × f =1 18 000 at 8 GHz) reported for a niobate-based perovskite.  相似文献   

13.
The microwave dielectric properties of CaTi1− x (Al1/2Nb1/2) x O3 solid solutions (0.3 ≤ x ≤ 0.7) have been investigated. The sintered samples had perovskite structures similar to CaTiO3. The substitution of Ti4+ by Al3+/Nb5+ improved the quality factor Q of the sintered specimens. A small addition of Li3NbO4 (about 1 wt%) was found to be very effective for lowering sintering temperature of ceramics from 1450–1500° to 1300°C. The composition with x = 0.5 sintered at 1300°C for 5 h revealed excellent dielectric properties, namely, a dielectric constant (ɛr) of 48, a Q × f value of 32 100 GHz, and a temperature coefficient of the resonant frequency (τf) of −2 ppm/K. Li3NbO4 as a sintering additive had no harmful influence on τf of ceramics.  相似文献   

14.
The effects of calcium substitution on the structural and microwave dielectric characteristics of [(Pb1− x Ca x )1/2La1/2](Mg1/2Nb1/2)O3 ceramics (with x = 0.01–0.5) were investigated. All the materials were observed to have an ordered A(B1/2'B1/2")O3-type perovskite structure; however, the space group of the structure changed from Fm 3 m to Pa 3 as the calcium content increased to x = 0.1, and then from Pa 3 to R 3¯ at the x = 0.5 composition. During the structural evolution, the lattice parameter of the perovskite cell decreased linearly, and the dielectric constant ( k ) also decreased, from k = 80 to k = 38. However, the product of the quality factor and the resonant frequency ( Q × f ) increased from 50 000 GHz to 90 000 GHz as the calcium content increased. Also, the temperature coefficient of resonant frequency (τƒ) gradually changed from 120 ppm/°C to −40 ppm/°C as the calcium content increased. At the x = 0.3 composition, a combination of properties— k ∼ 50, Q × f ∼ 86 000 GHz, and τƒ∼ 0 ppm/°C—can be obtained.  相似文献   

15.
The structure and dielectric properties of (1− x )Pb(Sc2/3W1/3)O3–( x )Pb(Zr/Ti)O3 ceramics have been investigated over a full substitution range. All compositions with x < 0.5 adopt a cubic perovskite structure; however, for x ≤ 0.25 a doubled cell results from a 1:1 ordered distribution of the B-site cations. The structural order in Pb(Sc2/3W1/3)O3 (PSW) can be described by a random-site model with one cation site occupied by Sc3+ and the other by a random distribution of (Sc1/33+W2/36+). The ordering is destabilized in solid solutions of PSW with PbZrO3 (PSW–PZ), but stabilized by PbTiO3 in the (1− x )PSW–( x )PT system. The changes in order are accompanied by alterations in the dielectric response of the two systems. For PSW–PZ the temperature of the permittivity maximum ( T ɛ,max) increases linearly with x ; however, for PSW–PT T ɛ,max decreases in the ordered region (up to x = 0.25) and then increases rapidly as the order is lost. Similar effects were produced by modifying the degree of order of (0.75)PSW–(0.25)PT; when the order parameter was reduced from ∼1.0 to ∼0.65, T ɛ,max increased by more than 60°C.  相似文献   

16.
The phase relations and the mechanism of solid-state synthesis for the Na0.5Bi0.5TiO3–Li3 x La(2/3)− x (1/3)−2 x TiO3 system were investigated using X-ray powder diffraction, scanning electron microscopy, and thermal analysis. The study revealed that the extent of the homogeneity range—which is related to the A-site substitution between (Na0.5Bi0.5)2+ and (Li3 x La(2/3)− x (1/3)−2 x )2+ pseudo cations of a perovskite structure—depends strongly on the ordering of the (Li3 x La(2/3)− x (1/3)−2 x )2+ species. The solid-state reaction of the compounds in the homogeneity range is completed only after multiple high-temperature firings. However, the system is also subjected to a slow thermal decomposition; this is particularly so for the compounds with a high × value and an increased Li3 x La(2/3)− x (1/3)−2 x TiO3 concentration.  相似文献   

17.
This study investigates the effect of CaZrO3 (CZ) substitution on the evolution of an ordered structure in a Ca(Mg1/3Nb2/3)O3 (CMN) system using Raman spectroscopy, X-ray diffractometry, and transmission electron microscopy. It indicates that a (1− x ) CMN−( x )CZ solid solution has the 1:2 and 1:1 ordered structure distorted by the antiphase, the inphase tilting of oxygen octahedra, and the antiparallel shift of A-site cation. A distinct correlation is noted between the transition of the ordered structure and microwave dielectric properties. The differences in ɛr and τf are attributed exclusively to the differences in the type of cation arrangement. The structure with the 1:2 ordering exhibits a lower relative permittivity and a more negative τf than the structure with the 1:1 ordering. The increased fraction of compressed Nb–O bond in the 1:2 ordered structure associated with a large NbO6 octahedral distortion is correlated with a decrease in relative permittivity and change of τf toward more negative values. Simultaneously, the substitution of the Zr4+ ion causes a linear increase in polarizability, and it also results in an increase in the relative permittivity.  相似文献   

18.
The electromechanical and electric-field-induced strain properties of x Pb(Yb1/2Nb1/2)O3· y PbZrO3·(1− x − y )PbTiO3 ( x = 0.12, 0.25, 0.37; y = 0.10–0.40) ceramics have been studied systematically as a function of Pb(Yb1/2Nb1/2)O3 (PYN) content and PbZrO3/PbTiO3 (PZ/PT) ratio. In addition, the effect of MnO2 on the electromechanical properties of 0.12Pb(Yb1/2Nb1/2)O3·0.40PbZrO3·0.48PbTiO3 was also investigated. The maximum transverse strain values of 1.6 × 10−3 for x = 0.12, 1.45 × 10−3 for x = 0.25, and 1.36 × 10−3 for x = 0.37 were obtained at the compositions which were regarded as the morphotropic phase boundary (MPB). The transverse strain was maximized at the MPB composition. The value of the maximum electromechanical coupling coefficient was 0.69 for y = 0.40 and x = 0.12 composition. In the 0.12Pb(Yb1/2Nb1/2)O3·0.40PbZrO3·0.48PbTiO3 composition, the temperature of the maximum dielectric constant decreased and the grain size increased with an addition of MnO2. The electromechanical coupling coefficient decreased while the mechanical quality factor rapidly increased with an addition of MnO2. These resulted mainly from the acceptor effect of manganese ions that were produced by doping MnO2 into the perovskite structure.  相似文献   

19.
Sb2O5 were selected to substitute (Nb0.8Ta0.2)2O5 and the effects of Sb substitution on the dielectric properties of Ag(Nb0.8Ta0.2)O3 ceramics were studied. The perovskite Ag(Nb0.8Ta0.2)1− x Sb x O3 ceramics showed no obvious change with x value being no more than 0.08, and the pseudoperovskite unit cell parameters a = c , b and monoclinic angle β decrease with Sb concentration increasing. The dielectric properties of Ag(Nb0.8Ta0.2)1− x Sb x O3 ceramics were found to be affected greatly by the substitution of Sb for Nb/Ta. The ɛ value of Ag(Nb0.8Ta0.2)1− x Sb x O3 ceramics sintered at their densified temperature increased from 480 to 825 with x from 0 to 0.08, the tan δ value decreased sharply from 0.0065 to 0.0023 (at 1 MHz) with x increasing from 0 to 0.04, and then kept a stable lower tan δ value ∼0.0024 with x to 0.08. The temperature coefficient of capacitance values continuously decreased from a positive value of 1450 ppm/°C for x =0 to a negative value of −38.52 ppm/°C for x =0.08.  相似文献   

20.
PbTiO3-doped sodium bismuth titanate (Na1/2Bi1/2)1− x Pb x TiO3 of perovskite structure is one of the best-known piezoelectrics/ferroelectrics. However, it has not been properly investigated in any thin-film forms. In this study, the dielectric properties of (Na1/2Bi1/2)0.87Pb0.13TiO3 thin films synthesized via a sol–gel route were investigated. They exhibit a strong frequency dispersion of the dielectric permittivity at relatively high frequencies, which is shifted to lower frequencies with increasing temperature. The electrical behavior can be fitted using Jonscher's universal law for dielectric relaxation. The peculiar dielectric behaviors observed can be ascribed to the coexistence of two different dielectric phases in the films, which is believed to be associated with the growth of the local Pb2+TiO3 nanoclusters upon substitution of Pb2+ for Na+/Bi3+ in the (Na1/2Bi1/2)1− x Pb x TiO3 films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号