首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of permanent forebrain lesions on conditioned taste aversions (CTAs) and conditioned odor aversions (COAs) were examined in 3 experiments. In Experiment 1, lesions of the bed nucleus of the stria terminalis had no influence on CTA or COA acquisition. Although lesions of the lateral hypothalamus induced severe hypodipsia in Experiment 2, they did not prevent the acquisition of CTAs or COAs. Finally, in Experiment 3, lesions of the insular cortex retarded CTA acquisition but had no influence on COA acquisition. The implications of these findings are discussed with regard to the forebrain influence on parabrachial nucleus function during CTA acquisition. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

2.
[Correction Notice: An erratum for this article was reported in Vol 121(6) of Behavioral Neuroscience (see record 2007-18058-034). Figure 4 on p. 96 (Results and Discussion, Experiment 2: Behavioral section) was incorrect. The correct figure is provided in the erratum.] The present study examined the effects of neurotoxic lesions of the central nucleus (CNA) and basolateral complex (BLA) of the amygdala on conditioned taste aversion (CTA) in a latent inhibition design. In Experiment 1, lesions of the CNA were found to have no affect on CTA acquisition regardless of whether the taste conditioned stimulus (CS) was novel or familiar. Lesions of the BLA, although having no influence on performance when the CS was familiar, retarded CTA acquisition when the CS was novel in Experiment 2. The pattern of results suggests that the CTA deficit in rats with BLA lesions may be a secondary consequence of a disruption of perceived stimulus novelty. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

3.
It has been proposed that long-term potentiation (LTP) a form of activity-dependent modification of synaptic efficacy, may be a synaptic mechanism for certain types of learning. Recent studies on the insular cortex (IC) a region of the temporal cortex implicated in the acquisition and storage of conditioned taste aversion (CTA), have demonstrated that tetanic stimulation of the basolateral nucleus of the amygdala (Bla) induce an N-methyl-d-aspartate (NMDA) dependent LTP in the IC of adult rats in vivo. Here we present experimental data showing that intracortical administration of the NMDA receptor competitive antagonist CPP (-3(-2 carboxipiperazin-4-yl)-propyl-1-phosphonic acid) disrupts the acquisition of conditioned taste aversion, as well as, the IC-LTP induction in vivo. These findings are of particular interest since they provide support for the view that the neural mechanisms underlying NMDA dependent neocortical LTP, constitute a possible mechanism for the learning related functions performed by the IC.  相似文献   

4.
This study examined the role of the entorhinal cortex (EC) in conditioned odor aversion learning (COA). Lateral EC lesions did not impair but rather facilitated COA. In the experiments the delay separating the odor cue presentation from the subsequent toxicosis was varied during acquisition. EC-lesioned rats demonstrated COA for delays up to 2 hr, whereas sham-operated rats displayed COA only if toxicosis immediately followed the odor cue. This facilitation was not dependent on the intensity of the odor and corresponded to a facilitated long-delay learning. EC lesion did not affect conditioned taste aversion, confirming that the facilitation effect does not correspond to a general facilitation of conditioned aversion learning. Taken together, these results indicate that the removal of the EC may allow odor-toxicosis associations across longer delays by extending the duration of the olfactory trace. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

5.
Reports results of 8 experiments with a total of 327 male Sprague-Dawley rats. Lesions to the basolateral amygdala produced permanent impairment in Ss' ability to learn a taste aversion. When lesions were administered after Ss had already learned an aversion, there was complete loss of the aversion. Ss with amygdala lesions also had a diminished neophobic response when presented with a novel solution and showed a more generalized aversion to water after a sucrose-sickness trial. Whether a solution was novel or familiar affected the learning of an aversion for controls more than it did for Ss with amygdala lesions. Ss with amygdala damage also showed less sodium appetite than normals in response to desoxycorticosterone acetate injections. These results indicate that rats with amygdala lesions have deficits in recognizing the significance of stimuli. (49 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

6.
Conducted 2 experiments with a total of 143 male Wistar rats to determine whether the disruption of conditioned taste aversion by amygdaloid brain stimulation (BST) during conditioning could be attributed to the stimulus properties of the BST. In Exp I, Ss receiving BST (a) while drinking saccharin, (b) during the onset of LiCl toxicosis, or (c) in the interval between taste exposure and toxicosis drank significantly more saccharin solution during a 48-hr retest than implanted or unoperated controls receiving similar taste–toxicosis pairings. In contrast, Ss receiving BST during both conditioning and retention trials developed a strong conditioned aversion. Exp II confirmed that BST formed a compound with the taste of the saccharin solution. A small but significant aversion was displayed by groups exposed to BST plus taste during conditioning and to either taste alone or BST alone during the retest. Again, the group presented with BST and taste prior to and following LiCl toxicosis displayed a strong conditioned aversion. Results suggest that disruption of conditioned taste aversion with amygdaloid BST represents a conditioning effect, not amnesia. (31 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

7.
The role of the perirhinal cortex (PC) in conditioned taste aversion (CTA) learning was investigated in Long-Evans rats. CTA was induced by the intraperitoneal administration of LiCl 60 min after saccharin-sweetened water drinking. The PC was reversibly inactivated by the stereotaxic administration of tetrodotoxin (TTX) 60 min before saccharin drinking, immediately after saccharin drinking (Experiment 1), 6 or 24 hr after LiCl administration (Experiment 2), and 60 min before CTA retrieval testing (Experiment 3). Only pre-saccharin drinking PC inactivation disrupted CTA. Thus, PC integrity is necessary only during the earliest phases of CTA mnemonic processing, that is, taste information acquisition and early gustatory memory elaboration. The results are discussed in relation to PC connectivity and PC temporal involvement in the memorization process of other aversive responses. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

8.
Lesions of the coeruleo-cortical noradrenergic projections caused marked cortical noradrenaline depletions but were not associated with deficits in the acquisition or extinction of a conditioned taste aversion (CTA). Lesions of lateral tegmental noradrenergic projections resulted in marked hypothalamic noradrenaline depletions, enhanced neophobia to the novel taste of saccharine, unimpaired acquisition but prolonged extinction of the CTA. However, when animals with lateral tegmental noradrenergic lesions received extensive preconditioning exposure to saccharine, acquisition of the CTA was attenuated and extinction was more rapid than in controls. Alterations in CTA learning and extinction following lesions of the lateral tegmental noradrenergic system appear to reflect alterations in the way that animals with lesions react toward the hedonic aspects of taste-related stimuli rather than alterations in associational or attentional mechanisms. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

9.
Rats (Rattus norvegicus) with almost complete ibotenic acid lesions (at least 90%) of the basolateral amygdaloid complex (BLA) failed to learn a conditioned taste aversion (CTA; Experiment 1A). In these same BLA rats, the bidirectional parabrachial–insular pathway that courses through the central nucleus of the amygdala (Ce) was shown to be spared (Experiment 1B), indicating that the BLA per se is critical for CTA learning. In contrast to the deleterious effect of BLA lesions on CTA, ibotenic acid lesions of the Ce did not block CTA learning (Experiment 2). Nonreinforced preexposure to the gustatory stimulus attenuated CTA acquisition in normal rats, and, under these conditions, rats with BLA lesions were no longer impaired (Experiment 3). Thus, ibotenic acid lesions centered over the Ce, sparing a considerable extent of the BLA, together with the testing procedure used in previous experiments (e.g., L. T. Dunn & B. J. Everitt, 1988), led to the belief that the CTA deficits reported after electrolytic lesions of the amygdala were the result of incidental damage to fibers of passage. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

10.
In 2 experiments, the effects of axon-sparing lesions of the hippocampus on performance in aversive and appetitive taste conditioning tasks were investigated. In Exp 1, hippocampally lesioned rats showed no impairment of conditioned taste aversion learning relative to controls, but they did display an increased sensitivity to latent inhibition (LI). In Exp 2, the same hippocampectomized rats acquired a conditioned taste preference but failed to show any evidence of extinction. The influence of the neurotoxic lesion on LI is in the opposite direction to the effect typically found following hippocampal damage induced by traditional methods. Accordingly, the data present challenges for most current theories of hippocampal function. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

11.
Rats with bilateral, electrophysiologically guided, ibotenic acid lesions of the gustatory thalamus (THLX) were tested for their ability to perform a variety of taste-guided behaviors. First, in daily 30-min sessions, the rats were given repeated 10-s access periods to a range of concentrations of sucrose, NaCl, or QHCl, plus water. Both the control and the THLX rats exhibited similar concentration-response functions, regardless of hydrational state. Next, on 3 trials, the rats were given 15 min access to 0.3 M l-alanine and then injected with LiCl (0.15 M, 1.33 ml/100 g body weight ip). All rats learned a taste aversion following 1 pairing with LiCl. Finally, on 3 separate occasions, the rats were injected with furosemide, and Na(+)-appetite was evaluated 24 hr later. All rats expressed an equivalent sodium appetite after the first furosemide injection, but only the control rats increased intake of 0.51 M NaCl with repeated sodium depletions. These observations reinforce prior data implying that an intact gustatory thalamus is not necessary for the expression of some taste-guided behaviors.  相似文献   

12.
Lesions localized to specific areas of the amygdala and overlying cortex in 41 adult male M?ll-Wistar rats produced differential effects in several behavioral tasks. Three different types of lesions were tested: central, basolateral, and cortex lateral to the amygdala. Lesions restricted to the central nucleus produced increased activity on all parameters studied in an open-field test, but the other 2 groups were not changed. In 1-way active avoidance all 3 groups with lesions showed deficits. The most pronounced change was observed in the central group. All groups showed the same degree of retention loss, but in forced extinction of 1-way active avoidance after retraining, the cortical and basolateral groups were most defective. A fear-reduction hypothesis is proposed for the central lesion. The basolateral and cortical areas may be more specifically involved in passive avoidance behavior. (13 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

13.
Rats with extensive ibotenic acid lesions centered in the gustatory zone of the pontine parabrachial nucleus (PBN) failed to acquire a conditioned taste aversion (CTA) induced by lithium chloride (LiCl) toxicosis (Experiments 1 and 4). This deficit cannot be explained as an inability to either perceive or process gustatory information because lesioned rats that failed to acquire a CTA readily acquired a conditioned flavor preference (Experiment 2). Similarly, the CTA deficit cannot be attributed to an inability to experience or process visceral input because PBN-lesioned rats that failed to acquire a CTA successfully learned an aversion to a trigeminal stimulus, capsaicin, when paired with LiCl-induced illness (Experiment 3). This pattern of results supports the view that cell bodies within the PBN are essential for the associative processes that govern CTA learning. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

14.
Studied the effects of preexposure and gonadal hormone manipulation on the extinction of a conditioned taste aversion in 198 male Sprague-Dawley rats. In Exp I, Ss were given 1 prior exposure to sucrose at some selected time (Days 4, 2, or 1) before a 2nd exposure (Day 0) to sucrose and a LiCl injection, or they were given only a single exposure (Day 0). Under single exposure, castrated Ss extinguished the aversion faster than either testosterone-treated castrated Ss or sham-operated Ss. In Exp II, estradiol, dihydrotestosterone, and testosterone were studied by using only a Day 1 preexposure condition. The testosterone-treated group maintained the aversion for the longest period, followed by dihydrotestosterone-treated, sham, castrated, and estradiol-treated groups. In Exp III, estradiol was administered alone or in combination with 2 doses of dihydrotestosterone. Findings indicate that the outcome of behavior was dependent on the ratio of estradiol to dihydrotestosterone, with variations in this ratio resulting in fast (estrogen effect) to slow (androgen effect) rates of extinction. (27 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

15.
In 5 experiments, 110 normal male Long-Evans hooded rats and 125 Ss with lesions of the gustatory neocortex (GN) were compared for their ability to learn aversions to taste cues paired with toxicosis. When the taste presentation was followed immediately by toxicosis, normal Ss and 8 Ss with lesions of the posterior (visual) neocortex learned aversions to sucrose, sodium chloride, quinine hydrochloride, and hydrochloric acid solutions. Ss with GN lesions learned aversions to all solutions except sucrose. In preference tests, all solutions were shown to be discriminable from water by both normal and GN-lesioned Ss. Under conditions in which a 6-hr delay separated taste presentation and toxicosis, normals again learned specific aversions to all 4 solutions, but Ss with GN lesions failed to learn specific aversions to sucrose, sodium chloride, and hydrochloric acid solutions. It was shown that the ability of Ss with GN lesions to learn aversions to sucrose and quinine depended on stimulus concentration. It is proposed that the data can be accounted for by postulating a change in the threshold for taste illness associations following GN lesions. (30 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

16.
Analyzed the mechanism of conditioned taste aversion (CTA) by subjecting 131 male and hooded rats in 5 experiments to reduced body temperature during various phases of CTA acquisition. A 15-min access to .1% saccharin served as the CS, and an ip injection of LiCl (.15 M, 4% of body weight) given 30 min later served as the UCS. Hypothermia (cooling to 20-22°C colonic temperature) alone or combined with anesthesia (Nembutal 20 or 40 mg/kg) did not prevent CTA acquisition when applied during the CS-UCS interval. Hypothermia induced immediately after LiCl administration to anesthetized or unanesthetized Ss failed to disrupt CTA or to increase neophobic rejection of saccharin. On the other hand, hypothermic Ss were not able to form the short-term gustatory trace when the CS (2% saccharin, 1% of body weight) was injected ip, although this procedure yielded significant CTA in euthermic Ss. It is concluded that the most vulnerable link of CTA acquisition is the formation of the short-term gustatory trace. Persistence of the short-term trace, its association with poisoning, and consolidation of the permanent CTA engram are accomplished by mechanisms that are resistant to hypothermia and/or anesthesia. (39 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

17.
Rats suppress intake of a normally preferred 0.15% saccharin conditioned stimulus (CS) when it is paired with an aversive agent like lithium chloride (LiCl) or a preferred substance such as sucrose or a drug of abuse. The reward comparison hypothesis suggests that rats avoid intake of a saccharin cue following pairings with a drug of abuse because the rats are anticipating the availability of the rewarding properties of the drug. The present study used bilateral ibotenic acid lesions to examine the role of the gustatory cortex in the suppression of CS intake induced by cocaine, morphine, and LiCl. The results show that bilateral lesions of the insular gustatory cortex (1) fully prevent the suppressive effects of both a 15 and a 30 mg/kg dose of morphine, (2) attenuate the suppressive effect of a 10 mg/kg dose of cocaine, but (3) are overridden by a 20 mg/kg dose of the drug. Finally, these same cortical lesions had no impact on LiCl-induced conditioned taste aversion. The current data show that the insular taste cortex plays an integral role in drug-induced avoidance of a gustatory CS. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

18.
Conducted 3 experiments with 96 Wistar and 72 Sprague-Dawley rats to investigate the effects of fluid deprivation on the sexually dimorphic rate of extinction of a conditioned taste aversion. Under ad lib water conditions, males extinguished a conditioned taste aversion more slowly than females. However, when rats were fluid deprived, there was no difference in the extinction rates of females and males even when the more sensitive 2-bottle test was used. This absence of the sexual dimorphism was due to a differential effect of deprivation on females and males. Fluid deprivation increased the rate of extinction of the male but had no effect on the rate of the female. It is proposed that the more rapid extinction rate of the deprived male could be accounted for by a deprivation-induced change in a testosterone-dependent mechanism. This proposal was supported by demonstrating that injections of testosterone propionate blocked the effects of fluid deprivation on rate of extinction in the male rat. (15 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

19.
The cholinergic system is important for learning, memory, and responses to novel stimuli. Exposure to novel, but not familiar, tastes increases extracellular acetylcholine (ACh) levels in insular cortex (IC). To further examine whether cholinergic activation is a critical signal of taste novelty, in these studies carbachol, a direct cholinergic agonist, was infused into IC before conditioned taste aversion (CTA) training with a familiar taste. By mimicking the cholinergic activation generated by novel taste exposure, it was hypothesized that a familiar taste would be treated as novel and therefore a salient target for aversion learning. As predicted, rats infused with the agonist were able to acquire CTAs to familiar saccharin. Effects of carbachol infusion on patterns of neuronal activation during conditioned stimulus–unconditioned stimulus pairing were assessed using Fos-like immunoreactivity (FLI). Familiar taste–illness pairing following carbachol, but not vehicle, induced significant elevations of FLI in amygdala, a region with reciprocal connections to IC that is also important for CTA learning. These results support the view that IC ACh activity provides a critical signal of taste novelty that facilitates CTA acquisition. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

20.
Reports an error in "Effects of Central and Basolateral Amygdala Lesions on Conditioned Taste Aversion and Latent Inhibition" by Justin St. Andre and Steve Reilly (Behavioral Neuroscience, 2007[Feb], Vol 121[1], 90-99). Figure 4 on p. 96 (Results and Discussion, Experiment 2: Behavioral section) was incorrect. The correct figure is provided in the erratum. (The following abstract of the original article appeared in record 2007-02025-008.) The present study examined the effects of neurotoxic lesions of the central nucleus (CNA) and basolateral complex (BLA) of the amygdala on conditioned taste aversion (CTA) in a latent inhibition design. In Experiment 1, lesions of the CNA were found to have no affect on CTA acquisition regardless of whether the taste conditioned stimulus (CS) was novel or familiar. Lesions of the BLA, although having no influence on performance when the CS was familiar, retarded CTA acquisition when the CS was novel in Experiment 2. The pattern of results suggests that the CTA deficit in rats with BLA lesions may be a secondary consequence of a disruption of perceived stimulus novelty. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号