首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CuInSe2 (CIS) and Cu(In,Ga)Se2 (CIGS) thin films were prepared by electrodeposition and processing. The influence of film deposition parameters such as bath composition, pH, deposition potential and material purity on film properties was studied. The structural, morphological, compositional and opto-electronic properties of electrodeposited and selenized CIS and CIGS thin films were characterized using various techniques. As-deposited as well as selenized films exhibited a compact or a granular morphology depending on the composition. The film stoichiometry was improved after selenization at 550°C in a tubular furnace. The films are formed with a mixed phase composition of CuInSe2 and CuIn2Se3.5 ternary phases.  相似文献   

2.
CuInSe2 films have been prepared using the selenization technique. Preparation of the precursor as well as selenization were carried out by the vacuum evaporation technique. The sequence of copper and Indium layer deposition during precursor preparation affects the morphological and structural properties of precursor which directly have effects on the properties of selenized CIS films. A thin layer of amorphous selenium at the substrate/film interface has been used to improve the adherence of the film. The effect of the Se under-layer has been studied on the layers of copper, indium, CuIn precursors and CIS films, using structural, morphological and optical properties. The surface morphology of a single layer of copper and indium, with and without the Selenium under-layer, are quite different and drastically affect the properties of the precursor and selenized films. The Se under-layer does not take part in the chemical reaction of CIS formation during the selenization process. The modified CIS films are uniform, single phase, polycrystalline, chalcopyrite with (1 1 2) preferred orientation showing an energy band gap of 0.99 eV and an absorption coefficient of 105 cm−1, and have good adherence to the substrate for the scotch tape test.  相似文献   

3.
CuInSe2 thin films were formed from the selenization of co-sputtered Cu–In alloy layers. These layers consisted of only two phases, CuIn2 and Cu11In9, over broad Cu–In composition ratio. The concentration of Cu11In9 phase increased by varying the composition from In-rich to Cu-rich. The composition of co-sputtered Cu–In alloy layers was linearly dependent on the sputtering power of Cu and In targets. The metallic layers were selenized either at a low pressure of 10 mTorr or at 1 atm Ar. A small number of Cu–Se and In–Se compounds were observed during the early stage of selenization and single-phase CuInSe2 was more easily formed in vacuum than at 1 atm Ar. Therefore, CuInSe2 films selenized in vacuum showed smoother surface and denser microstructure than those selenized at 1 atm. The results showed that CuInSe2 films selenized in vacuum had good properties suitable for a solar cell.  相似文献   

4.
Wei Li  Yun Sun  Wei Liu  Lin Zhou 《Solar Energy》2006,80(2):191-195
CIGS films were prepared on Mo-coated glass by sputtering and selenization processes. The metallic precursors were selenized under higher pressure in selenium vapor instead of H2Se. In order to improve the performance of CIGS thin film solar cells, the morphologies of CIGS thin films were studied carefully by various temperature profiles. The relationship between temperature decrease rate and fill factor (FF) of solar cells was investigated thoroughly. On the other hand the value of open circuit voltage (Voc) was improved by increasing the gallium content near the surface of CIGS thin film. A glass/Mo/CIGS/CdS/ZnO cell was fabricated and the conversion efficiency of 9.4% was obtained without antireflective film.  相似文献   

5.
Sputtering technique for Cu–In precursor films fabrication using different Cu and In layer sequences have been widely investigated for CuInSe2 production. But the CuInSe2 films fabricated from these precursors using H2Se or Se vapour selenization mostly exhibited poor microstructural properties. The co-sputtering technique for producing Cu–In alloy films and selenization within a close-spaced graphite box resulting in quality CuInSe2 films was developed. All films were analysed using SEM, EDX, XRD and four-point probe measurements. Alloy films with a broad range of compositions were fabricated and XRD showed mainly In, CuIn2 and Cu11In9 phases which were found to vary in intensities as the composition changes. Different morphological properties were displayed as the alloy composition changes. The selenized CuInSe2 films exhibited different microstructural properties. Very In-rich films yielded the ODC compound with small crystal sizes whilst slightly In-rich or Cu-rich alloys yielded single phase CuInSe2 films with dense crystals and sizes of about 5 μm. Film resistivities varied from 10−2–108 Ω cm. The films had compositions with Cu/In of 0.40–2.3 and Se/(Cu+In) of 0.74–1.35. All CuInSe2 films with the exception of very Cu-rich ones contained high amount of Se (>50%).  相似文献   

6.
Gas phase selenization of vacuum deposited Cu and In thin films employing an elemental Se vapour source is demonstrated as an essential first step in the search for optimized process parameters for the formation of single phase CuInSe2 materials suitable for solar cell applications. The selenization was accomplished in Se vapour, derived from an elemental Se source, held at 240–260°C. This source was placed in a flow of nitrogen gas at 500 Torr to transport the Se vapour to the metal films. The selenization reaction readily occurs at Cu and In films kept at 340–400°C. Lower selenization temperatures invariably lead to the formation of Cu and In selenides with well defined crystalline microstructures. Hexagonal CuSe with an excess of Se in the matrix is the equilibrium growth phase, while the cubic Cu2−xSe phase evolves under conditions of excess Se flux. Selenization of the In films consistently led to the formation of the β-form of hexagonal In2Se3. At high selenization temperatures (400°C), while the β-form still emerges as the major component, traces of the α-form of In2Se3 are also detected. Detailed X-ray diffraction, electron probe analysis and microstructure data are presented.  相似文献   

7.
The efficiencies of Cu(In,Ga)Se2/CdS/ZnO solar cell devices in which the absorbers are produced by classical two-step processes are significantly lower that those in which co-evaporated absorbers are used. A significant problem related to two-step growth processes is the reported segregation of Ga towards the Mo back contact, resulting in separate CuInSe2 and CuGaSe2 phases. Furthermore, it is often reported that material losses (especially In and Ga) occur during high-temperature selenization of metallic precursors. In this study, X-ray fluorescence (XRF) analysis was used to study the diffusion behaviour of the chalcopyrite elements in single-stage and two-stage processed Cu(In,Ga)Se2 thin films. This relatively simple characterization technique proved to be very reliable in determining the degree of selenium incorporation, possible material losses and the in-depth compositional uniformity of samples at different stages of processing. This information is especially important in the case of two-stage growth processes, involving high-temperature selenization steps of metallic precursors. Device quality Cu(In,Ga)Se2 thin films were prepared by a relatively simple and reproducible two-step growth process in which all the metals were evaporated from one single crucible in a selenium-containing environment. The precursors were finally treated in an H2Se/Ar atmosphere to produce fully reacted films. XRF measurement indicated no loss of In or Ga during this final selenization step, but a significant degree of element diffusion which depended on the reaction temperature. It was also possible to produce Cu(In,Ga)Se2 thin films with an appreciable amount of Ga in the near-surface region without separated CuInSe2 and CuGaSe2 phases.  相似文献   

8.
Formation mechanism of CIS thin films by selenization of sputter deposited CuIn precursor with Se vapor was investigated by ex-situ and in-situ phase analysis tools. Precursor films were composed of In, CuIn and Cu2In compounds, and their relative fractions were systematically changed with Cu/In ratios. Those films were found to have a double layered structure with nearly pure In particles (top layer) placed on the flat Cu-rich bottom layer, and the morphologies were also significantly affected by Cu/In ratio. At the initial stage of selenization, the outer In-rich layer reacted with Se vapor to form In-Se binary, which is the first selenide phase appeared, and inner Cu-rich phases acted as a Cu source to supply Cu to outer In-Se phase to form ordered vacancy compounds (OVC). As these reactions continues, in conjunction with Se incorporation into inner Cu-rich region, the films gradually changes from OVC to α-CIS, reflecting that the formation route of CIS is closely related to the elemental and phase distribution in precursor films. Selenized CIS films were further processed to fabricate CIS thin film solar cells, resulting in the best cell efficiency of 10.44%.  相似文献   

9.
Thin films based on CuInSe2 have become very successful as absorber layers for solar cells. It is only in the recent past that gallium (Ga) and sulfur (S) were incorporated into CuInSe2 in order to increase the energy band gap of the film to an optimum value with the ultimate aim of producing more efficient devices. This paper focuses on the incorporation of S into partly selenized CuInSe2 films in order to produce CuIn(Se,S)2 films with varying S/Se+S ratios, resulting in different band-gap energies. This was achieved by varying the conditions when selenizing Cu/In alloys in H2Se/Ar, and then exposing these various partly selenized films to H2S/Ar under identical conditions.  相似文献   

10.
Cu(InxGa1−x)Se2 (CIGS) thin films were prepared by selenization of CuInGa single-layer metallic precursors. At the first stage, CuInGa metallic precursors were deposited onto soda lime glass by direct current (DC) magnetron sputtering system using a CuInGa ternary alloy target with a composition ratio of Cu:In:Ga of 1:0.7:0.3. The precursor films were reacted with Se vapor in vacuum evaporation system. By means of X-ray diffraction (XRD), field emission scanning electron microscope (SEM) and electron probe microanalysis (EPMA), it was found that CIGS thin films exhibit large facetted grains and single chalcopyrite phase with preferred orientation along (1 1 2) plane. Meanwhile, the surface roughness of the CIGS films can be determined by the morphology of the precursor films.  相似文献   

11.
Results of characterization of thin films of Mo deposited by DC magnetron sputtering on soda-lime glass (Mo/SLG) and CuInSe2 (CIS) on Mo/SLG are presented. The primary objective of the work was to clarify the factors determining the concentration of Na in commercial-grade CIS. Mo films were deposited by three laboratories manufacturing CIS thin film solar cells. Analysis was by secondary ion mass spectrometry, scanning electron microscopy and X-ray diffraction. Changes in Mo deposition parameters in general affected the Na level but there was no obvious link to any single Mo deposition parameter. Oxygen content directly affected the Na level. The Na behavior was not obviously connected to film preferred orientation. Selenization of the Mo layers was also examined. Elemental Se vapor was found to produce significantly less selenization than H2Se. The amount of selenization was also strongly dependent upon Mo deposition conditions, although a specific source of the change in reaction rate was not found. Na distributions in the CIS deposited on the Mo were not limited by the diffusivity of the Na. The Na concentration in the CIS was increased by annealing the Mo films both with and without intentionally added Na. The Na level in the CIS appears to be set more by the CIS deposition process than by the Na concentration in the Mo so long as the Mo contains sufficient Na to saturate the available sites in the CIS.  相似文献   

12.
Cu2ZnSnSe4 (CZTSe) films were prepared by selenization of oxides nanoparticles. A novel densification method was performed to improve the grain size and morphology of the CZTSe films. From absorption spectroscopy measurement, it was also found that the compressed CZTSe films showed Kesterite structure with a band gap of 0.92 eV, while the untreated CZTSe films showed partially disordered Kesterite structure with a band gap of 0.86 eV. The phase transition during the selenization of oxides nanoparticles is affected significantly by the compact density. The nucleation and growth of Kesterite phase is considered to be facilitated by the mass transfer around the particle contacts. The different characterization techniques show that the dense CZTSe layer with very large grain size can be achieved by using compression method.  相似文献   

13.
The objective of this study is to find the key factors to improve Voc. In this study, pentanary Cu(InGa)(SeS)2 absorbers were prepared by selenization and sulfurization or a sulfurization after selenization (SAS) method. It is found that the “sulfurization degree” defined as a function of temperature and holding time at the sulfurization step is a key factor to enhance the Ga diffusion and improve Voc. It is also verified that increase in the temperature difference between selenization and sulfurization enhances the incorporation of S into the selenide absorber. Applying these findings related to Ga and S, Voc of 642 mV/cell and efficiency of 14.3% are achieved on a 30 cm×30 cm-sized soda-lime glass substrate.  相似文献   

14.
In this study, CuInSe2 (CISe) thin films were prepared from thermally evaporated Cu/In precursors, having various Cu/In atomic ratio, under the same selenization conditions. The precursors were converted into CISe absorber by annealing in a quartz tube furnace in the selenium vapours at substrate temperature of 500 °C. We developed four CISe films with Cu/In atomic ratio of 0.81–1.19, denoted as Cu‐very rich, Cu‐rich, Cu‐poor, and Cu‐very poor CISe thin films respectively. The effects of Cu/In atomic ratio on grain size, surface morphology, micro‐structure and defect formation of the resulting CISe films were examined. It has been found that the photovoltaic properties were strongly related to Cu concentration, as well as carrier transport mechanism. Defects at the surface and in the bulk of CISe thin films were observed using X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy, Raman spectroscopy, energy dispersive X‐ray spectroscopy and scanning electron microscopy. Moreover, XRD revealed that the CISe film surface had a preferred orientation along the (112) plane. The XRD intensity and full width at half maximum of the (112) plane of CISe varied according to the Cu/In atomic ratio. Our experimental results show that the Cu‐rich solar cell achieves conversion efficiency of 4.55% and exhibits an exceptional high short‐circuit current density. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
CuIn1−xGaxSe2 (CIGS) thin films were formed from an electrodeposited CuInSe2 (CIS) precursor by thermal processing in vacuum in which the film stoichiometry was adjusted by adding In, Ga and Se. The structure, composition, morphology and opto-electronic properties of the as-deposited and selenized CIS precursors were characterized by various techniques. A 9.8% CIGS based thin film solar cell was developed using the electrodeposited and processed film. The cell structure consisted of Mo/CIGS/CdS/ZnO/MgF2. The cell parameters such as Jsc, Voc, FF and η were determined from I–V characterization of the cell.  相似文献   

16.
We have fabricated 13.7%- and 7.3%-efficient CuIn1−xGaxSe2 (CIGS)-based devices from electrodeposited and chemical bath deposited precursors. As-deposited precursors are Cu-rich films and polycrystalline (grain size is very small) in nature. Only preliminary data is presented on chemical bath deposited precursors. Additional In, Ga, and Se were added to the precursor films by physical evaporation to adjust the final composition to CuIn1−xGaxSe2. Addition of In and Ga and also selenization at high temperature are very crucial to obtain high efficiency devices. Three devices with Ga/(In+Ga) ratios of 0.16, 0.26, and 0.39 were fabricated from electrodeposited precursors. The device fabricated from the chemical bath deposited precursor had a Ga/(In+Ga) ratio of 0.19. The films/devices have been characterized by inductive-coupled plasma spectrometry, Auger electron spectroscopy, X-ray diffraction, electron-probe microanalysis, current-voltage characteristics, capacitance–voltage, and spectral response. The compositional uniformity of the electrodeposited precursor films both in the vertical and horizontal directions were studied. The electrodeposited device parameters are compared with those of a 17.7% physical vapor deposited device.  相似文献   

17.
A CuIn(SxSe1−x)2 alloy thin-film was prepared by selenization of CuInS2: its composition ratio x can be controlled by the number of selenization cycles implemented. Crystallinity of the films was improved by annealing in vacuum. The resistivity of the film was about 1 Ω cm and increased by one to two orders of magnitude after KCN treatment. An 8.1 % efficiency solar cell was obtained by using this annealed alloy thin-film.  相似文献   

18.
CuIn1−xGaxSe2 polycrystalline thin films were prepared by a two-step method. The metal precursors were deposited either sequentially or simultaneously using Cu–Ga (23 at%) alloy and In targets by DC magnetron sputtering. The Cu–In–Ga alloy precursor was deposited on glass or on Mo/glass substrates at either room temperature or 150°C. These metallic precursors were then selenized with Se pellets in a vacuum furnace. The CuIn1−xGaxSe2 films had a smooth surface morphology and a single chalcopyrite phase.  相似文献   

19.
Electrochemical, spectroscopic and structural measurements were used to characterize the electrochromic behavior and stability of sol–gel deposited Co(OH)2 thin films. These films were prepared from polymeric solutions containing cobalt methoxyethoxide precursor by spin coating technique. The as-deposited films are amorphous and show crystalline structure after heat treatment at 450°C. Sol–gel-deposited cobalt hydroxide films show reversible electrochromic response in 1 M LiClO4/ propylene carbonate solution beyond 500 cycles. The structural and chemical properties of the films were investigated by X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy. Spectral transmittance change was Tp=29.9–60.2% for cobalt hydroxide films. It is argued that reversible lithium insertion capacity, good cyclic reversibility of Co(OH)2 films make them suitable as counterelectrode layers in the electrochromic devices.  相似文献   

20.
The goal of this study has been to investigate the influence of various post-deposition heat treatments on the microstructure, electrical and optical properties of In2O3:Sn (ITO) thin films deposited by electron beam evaporation. We have shown that electron beam evaporated ITO thin films deposited onto substrates kept upto 150 °C, have poor electrical properties and low optical transmission in the visible range, due to their amorphous structure. As the microstructure changes from amorphous to polycrystalline it was observed that the film resistivity decreases and it is simultaneously related to an improvement in the optical transmission. From comparisons of several annealing processes it has been observed that oxygen plays an important role in doping as well as the presence of Sn in the target material. Furthermore we have shown that high quality ITO thin films can be reproducibly prepared with optical transmission being enhanced by an annealing in air and the electrical characteristics being improved by a further annealing in a reducing atmosphere. Superior electrical and optical properties could be correlated with annealed films that exhibited a cubic bixbyte structure and large crystallite dimensions larger than 50 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号