首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigates the effect of a semi-infinite smooth moving punch due to shear wave propagation in initially stressed, magnetoelastic, transversely isotropic material. The Wiener–Hopf technique has been employed to determine the closed form expression of dynamic stress concentration due to punch with a load of constant intensity. The substantial effects of magnetoelastic coupling parameters, horizontal and vertical compressive/tensile initial stress, and anisotropy on dynamic stress concentrations has been remarkably traced out. Numerical computations and graphical illustrations, along with comparative study, have been executed for three distinct models: when the strip is comprised of Zinc, Beryl material having hexagonal symmetry, and simply isotropic material.  相似文献   

2.
Interface crack in periodically layered bimaterial composite   总被引:1,自引:0,他引:1  
A directional crack growth prediction in a compressed homogenous elastic isotropic material under plane strain conditions is considered. The conditions at the parent crack tip are evaluated for a straight stationary crack. Remote load is a combined biaxial compressive normal stress and pure shear. Crack surfaces are assumed to be frictionless and to remain closed during the kink formation wherefore the mode I stress intensity factor K I is vanishing. Hence the mode II stress intensity factor K II remains as the single stress intensity variable for the kinked crack. An expression for the local mode II stress intensity factor k 2 at the tip of a straight kink has been calculated numerically with an integral equation using the solution scheme proposed by Lo (1978) and refined by He and Hutchinson (1989). The confidence of the solution is strengthened by verifications with a boundary element method and by particular analytical solutions. The expression has been found as a function of the mode II stress intensity factor K II of the parent crack, the direction and length of the kink, and the difference between the remote compressive normal stresses perpendicular to, and parallel with, the plane of the parent crack. Based on the expression, initial crack growth directions have been suggested. At a sufficiently high non-isotropic compressive normal stress, so that the crack remains closed, the crack is predicted to extend along a curved path that maximizes the mode II stress intensity factor k 2. Only at an isotropic remote compressive normal stress the crack will continue straight ahead without change of the direction. Further, an analysis of the shape of the crack path has revealed that the propagation path is, according the model, required to be described by a function y=cx , where the exponent is equal to 3/2. In that case, when =3/2, predicts the analytical model a propagation path that is self-similar (i.e. the curvature c is independent of any length of a crack extension), and which can be described by a function of only the mode II stress intensity factor K II at the parent crack tip and the difference between the remote compressive normal stress perpendicular to, and parallel with, the parent crack plane. Comparisons with curved shear cracks in brittle materials reported in literature provide limited support for the model discussed.  相似文献   

3.
Fatigue crack propagation rates in centre-crack-typed transverse butt-welded joints were measured at a constant stress intensity factor range obtained by decreasing the applied and mean loads on test specimens. The propagation rate was maintained constant except at extremely compressed stress ratios. Fatigue crack propagation properties under compressive loading were found to be similar to those under tensile loading. Only under highly compressive cycling did crack propagation rates decrease.  相似文献   

4.
In this paper the method of weight functions is employed to calculate the stress intensity factors for an internal circumferential crack in a thick‐walled cylinder. The pressurized cylinder is also subjected to convection cooling on the inner surface. Finite element method is used to determine an accurate weight function for the crack and a closed‐form thermal stress intensity factor with the aid of the weight function method is extracted. The influence of crack parameter and the heat transfer coefficient on the stress intensity factors are determined. Comparison of the results in the special cases with those cited in the literature and the finite element data shows that the results are in very good agreement.  相似文献   

5.
The geometric correction function F in the expression for stress intensity factors has been determined experimentally by a compliance method for bar-shaped specimens of Al-7475-T761 (with a rectangular cross-section) cyclically loaded in bending at R = −1 and room temperature. The experimental method makes it possible to resolve the behaviour of the crack during the tensile and compressive portions of the loading cycle. This leads to the introduction of the initial notch size as an additional correction parameter. The development of the equilibrium shape of the crack during crack growth up to long surface distances has been investigated. These results have been used for the determination of F. A comparison with literature data is presented.  相似文献   

6.
In this research, both residual and applied stresses are converted to stress intensity factors independently and combined using the superposition principle. The fatigue crack propagation rates are predicted. Experiments using two different loading modes, constant applied stress intensity factor (SIF) range, and constant applied load modes are done for samples with and without initial tensile residual stresses. The samples with initial tensile residual stresses exhibit accelerations of the crack propagation rates. The results show that the weight function method combined with the three-component model provides a good prediction of fatigue crack propagation rates in tensile residual stress fields.  相似文献   

7.
A three-dimensional axisymmetric crack with a slightly non-flat surface in an isotropic linear solid under axisymmetric loading is analyzed. The problem is formulated by using the Hankel transform and a perturbation solution is obtained, which is accurate to the first order of the parameter representing the non-flatness. The stress intensity factor for the problem is evaluated. In particular, the stress intensity factor at the onset of axisymmetric kinking from a penny-shaped crack is obtained. It is also shown that the two-dimensional Cotterell-Rice theory for the effect of tensile stress acting parallel to the crack surface on the stability of crack path is valid for the axisymmetric crack.  相似文献   

8.
The elastodynamic response of an infinite orthotropic material with a semi-infinite crack propagating at constant speed under the action of concentrated loads on the crack faces is examined. Solution for the stress intensity factor history around the crack tip is found for the loading modes I and II. Laplace and Fourier transforms along with the Wiener-Hopf technique are employed to solve the equations of motion. The asymptotic expression for the stress near the crack tip is analyzed which lead to a closed-form solution of the dynamic stress intensity factor. It is found that the stress intensity factor for the propagating crack is proportional to the stress intensity factor for a stationary crack by a factor similar to the universal function k(v) from the isotropic case. Results are presented for orthotropic materials as well as for the isotropic case.  相似文献   

9.
Experimental backtracking technique and finite element analysis have been employed to evaluate the stress intensities along the front of an elliptical surface crack in a cylindrical rod. The finite element solution covers a wide range of crack shapes loaded under end-free and end-constrained axial tension and pure bending. Convenient closed form stress intensity expressions along the whole crack front for each of the loading cases have been given in terms of the crack aspect ratio, crack depth ratio and place ratio.The closed form solutions have been compared against a number of representative solutions collected from the literature. It has been found that different finite element results for the interior points are generally in good mutual agreement, while solutions derived from other methods may sometimes indicate different trends. At the surface interception point agreement is less good because of a complication in the interpretation of stress intensity there.Experimental backtracking results on the end-constrained axial tension case corroborate well with the closed form solution presented. It suggests that the current closed form solution is adequate in describing the stress intensities along the whole crack front of real surface cracks in cylindrical rods.  相似文献   

10.
A theoretical approach has been put forward for predicting the strengthening of materials by the introduction of surface compressive stresses. An approximate technique was used to determine the closure length of a linear surface crack which extends through the compressive surface layer. The stress intensity factor of the partially closed crack was then determined for the case of an applied tensile stress, with the assumption that the residual surface compressive stress was uniform within the surface layer (step function). The analysis shows that the strengthening depends on the magnitude and depth of the compressive surface stress. It is found that partial crack closure decreases the amount of strengthening compared with that predicted for an open crack, and that for large compressive surface stresses the amount of strengthening can saturate.  相似文献   

11.
Two dimensional solutions of the magnetic field and magneto elastic stress are presented for a magnetic material of a thin strip with a semi-elliptical notch subjected to uniform magnetic field. The strip is a finite plate of a simply connected region. A linear constitutive equation is used for the stress analysis. According to the electro-magneto theory, only Maxwell stress is caused as a body force in a plate. Therefore, the magneto elastic stress is analyzed using Maxwell stress. In the present problem, as a result, the plane stress state does not arise, and the σz in the direction of the plate thickness and the shear deflection (anti-plane shear stress) arise for soft ferromagnetic material. The stress σz in the plate is strong compressive stress for a soft ferromagnetic material. A rational mapping function is used for the stress analysis, and the each solution is obtained as a closed form. No further assumption of the plane stress state that the plate is thin is made for the stress analysis, though Maxwell stress components are expressed by nonlinear terms. The rigorous boundary condition is completely satisfied without any linear assumptions on the boundary. The anti-plane shear stress causes Mode III stress intensity factor when the notch is a crack. Stress concentration values are investigated for a notch problem, of which expression is given. Figures of the anti-plane shear stress distribution, Mode III stress intensity factor, and stress concentration values are shown.  相似文献   

12.
The evolution of the stress–strain fields near a stationary crack tip under cyclic loading at selected R‐ratios has been studied in a detailed elastic–plastic finite element analysis. The material behaviour was described by a full constitutive model of cyclic plasticity with both kinematic and isotropic hardening variables. Whilst the stress/strain range remains mostly constant during the cyclic loading and scales with the external load range, progressive accumulation of tensile strain occurs, particularly at high R‐ratios. These results may be of significance for the characterization of crack growth, particularly near the fatigue threshold. Elastic–plastic finite element simulations of advancing fatigue cracks were carried out under plane‐stress, plane‐strain and generalized plane‐strain conditions in a compact tension specimen. Physical contact of the crack flanks was observed in plane stress but not in the plane‐strain and generalized plane‐strain conditions. The lack of crack closure in plane strain was found to be independent of the material studied. Significant crack closure was observed under plane‐stress conditions, where a displacement method was used to obtain the actual stress intensity variation during a loading cycle in the presence of crack closure. The results reveal no direct correlation between the attenuation in the stress intensity factor range estimated by the conventional compliance method and that determined by the displacement method. This finding seems to cast some doubts on the validity of the current practice in crack‐closure measurement, and indeed on the role of plasticity‐induced crack closure in the reduction of the applied stress intensity factor range.  相似文献   

13.
This paper presents a boundary element analysis of elliptical cracks in two joined transversely isotropic solids. The boundary element method is developed by incorporating the fundamental singular solution for a concentrated point load in a transversely isotropic bi-material solid of infinite space into the conventional displacement boundary integral equations. The multi-region method is used to analyze the crack problems. The traction-singular elements are employed to capture the singularity around the crack front. The values of stress intensity factors (SIFs) are obtained by using crack opening displacements. The results of the proposed method compare well with the existing exact solutions for an elliptical crack parallel to the isotropic plane of a transversely isotropic solid of infinite extent. Elliptical cracks perpendicular to the interface of transversely isotropic bi-material solids of either infinite extent or occupying a cubic region are further examined in detail. The crack surfaces are subject to the uniform normal tractions. The stress intensity factor values of the elliptical cracks of the two types are analyzed and compared. Numerical results have shown that the stress intensity factors are strongly affected by the anisotropy and the combination of the two joined solids.  相似文献   

14.
The interface moving crack between the functionally graded coating and infinite substrate structure with free boundary is investigated in this paper. By application of the interface bonding conditions of the two media, all the quantities have been represented by means of a single unknown function. With the help of the exponent model of the shear modulus and density, the dual integral equation of moving crack problem is obtained by Fourier transform. The displacement is expanded into series form using Jacob Polynomial, and then the semi‐analytic solution of dynamic stress intensity factor is derived by Schmidt method. Dynamic stress intensity factor is influenced by those parameters such as crack velocity, graded parameter and coating height.  相似文献   

15.
This paper deals with the propagation of shear waves in a wave guide which is in the form of an infinite elastic strip with free lateral surfaces. This strip contains a Griffith crack. An integral transform method is used to find the solution of the equation of motion from the linear theory for a homogeneous, isotropic elastic material. This method reduces the problem into an integral equation. It has been observed that only shear waves with frequencies less than a parameter-value, depending on the width of the wave guide, can propagate. The integral equation is solved numerically for a range of values of wave frequency and the width of the strip. These solutions are used to calculate the dynamic stress intensity factor, displacement on the surface of the crack and crack energy. The results are shown graphically.  相似文献   

16.
The effect of tensile and compressive overloads on the threshold stress intensity level and crack closure behaviour of one aluminium alloy and three steels has been investigated. A few tensile overloads significantly decreased the crack propagation rate and increased the threshold stress intensity. An initially decreased and then increased opening stress was mostly responsible for the delayed retardation and crack arrest. Intermittant compressive overloads significantly accelerated the crack propagation and decreased the threshold stress intensity which was a function of the frequency of overloading. The opening stress was decreased to below zero after a large compressive peak load, and it took >105 cycles for the opening stress to return to its stable level. During this period an initially high crack propagation rate also gradually decreased to the stable value.  相似文献   

17.
This paper presents a boundary element analysis of linear elastic fracture mechanics in three‐dimensional cracks of anisotropic solids. The method is a single‐domain based, thus it can model the solids with multiple interacting cracks or damage. In addition, the method can apply the fracture analysis in both bounded and unbounded anisotropic media and the stress intensity factors (SIFs) can be deduced directly from the boundary element solutions. The present boundary element formulation is based on a pair of boundary integral equations, namely, the displacement and traction boundary integral equations. While the former is collocated exclusively on the uncracked boundary, the latter is discretized only on one side of the crack surface. The displacement and/or traction are used as unknown variables on the uncracked boundary and the relative crack opening displacement (COD) (i.e. displacement discontinuity, or dislocation) is treated as a unknown quantity on the crack surface. This formulation possesses the advantages of both the traditional displacement boundary element method (BEM) and the displacement discontinuity (or dislocation) method, and thus eliminates the deficiency associated with the BEMs in modelling fracture behaviour of the solids. Special crack‐front elements are introduced to capture the crack‐tip behaviour. Numerical examples of stress intensity factors (SIFs) calculation are given for transversely isotropic orthotropic and anisotropic solids. For a penny‐shaped or a square‐shaped crack located in the plane of isotropy, the SIFs obtained with the present formulation are in very good agreement with existing closed‐form solutions and numerical results. For the crack not aligned with the plane of isotropy or in an anisotropic solid under remote pure tension, mixed mode fracture behavior occurs due to the material anisotropy and SIFs strongly depend on material anisotropy. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
Summary. The elastostatic problem of an edge cracked orthotropic strip is considered. The crack possesses a semi-infinite length. The crack surfaces are subjected to opening mode I fracture, by a concentrated force action, while the strip surfaces are traction free. Fourier transforms and asymptotic analyses are employed to reduce the problem to a first kind singular integral equation. The stress intensity factor is determined in a closed form expression. The effects of geometric and elastic characteristics of the strip on the values of the stress intensity factor are explained.  相似文献   

19.
Summary Exact solution is given to the problem of a penny-shaped crack embedded in a transversely isotropic elastic half-space when arbitrary normal displacements are prescribed at its faces. A new integral representation of the kernel of the governing integral equation allowed to obtain closed form expressions for all the quantities of interest like, stresses inside and outside the crack, stress intensity factor, work done to open the crack, directly through the given displacements. Several illustrative examples are considered.  相似文献   

20.
In this paper, the influence of the residual compressive stresses induced by roller burnishing on fatigue crack propagation in the fillet of notched round bar is investigated. A 3D finite element simulation model of rolling has allowed to introduce a residual stress profile as an initial condition. After the rolling process, fatigue loading has been applied to three‐point bending specimens in which an initial crack has been introduced. A numerical predictive method of crack propagation in roller burnished specimens has also been implemented. It is based on a step‐by‐step process of stress intensity factor calculations by elastic finite element analyses. These stress intensity factor results are combined with the Paris law to estimate the fatigue crack growth rate. In the case of roller burnished specimens, a numerical modification concerning experimental crack closure has to be considered. This method is applied to three specimens: without roller burnishing, and with two levels of roller burnishing (type A and type B). In all these cases, the computational finite element predictions of fatigue crack growth rate agree well with the experimental measurements. The developed model can be easily extended to crankshafts in real operating conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号