首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study presents a novel application of the scaled boundary finite element method (SBFEM) to model dynamic crack propagation problems. Accurate dynamic stress intensity factors are extracted directly from the semi‐analytical solutions of SBFEM. They are then used in the dynamic fracture criteria to determine the crack‐tip position, velocity and propagation direction. A simple, yet flexible remeshing algorithm is used to accommodate crack propagation. Three dynamic crack propagation problems that include mode‐I and mix‐mode fracture are modelled. The results show good agreement with experimental and numerical results available in the literature. It is found that the developed method offers some advantages over conventional FEM in terms of accuracy, efficiency and ease of implementation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
The analysis of three‐dimensional crack problems using enriched crack tip elements is examined in this paper. It is demonstrated that the enriched finite element approach is a very effective technique for obtaining stress intensity factors for general three‐dimensional crack problems. The influence of compatibility, integration, element shape function order, and mesh refinement on solution convergence is investigated to ascertain the accuracy of the numerical results. It is shown that integration order has the greatest impact on solution accuracy. Sample results are presented for semi‐circular surface cracks and compared with previously obtained solutions available in the literature. Good agreement is obtained between the different numerical solutions, except in the small zone near the free surface where previously published results have often neglected the change in the stress singularity at the free surface. The enriched crack tip element appears to be particularly effective in this region, since boundary conditions can be easily imposed on the stress intensity factors to accurately represent the correct free surface condition. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
This paper is concerned with stress intensity factors for cracks emanating from a triangular or square hole under biaxial loads by means of a new boundary element method. The boundary element method consists of the constant displacement discontinuity element presented by Crouch and Starfied and the crack‐tip displacement discontinuity elements proposed by the author. In the boundary element implementation, the left or the right crack‐tip displacement discontinuity element is placed locally at the corresponding left or right crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundaries. The method is called a Hybrid Displacement Discontinuity Method (HDDM). Numerical examples are included to show that the method is very efficient and accurate for calculating stress intensity factors for plane elastic crack problems. In addition, the present numerical results can reveal the effect of the biaxial loads on stress intensity factors.  相似文献   

4.
The extended finite element method (XFEM) is improved to directly evaluate mixed mode stress intensity factors (SIFs) without extra post‐processing, for homogeneous materials as well as for bimaterials. This is achieved by enriching the finite element (FE) approximation of the nodes surrounding the crack tip with not only the first term but also the higher order terms of the crack tip asymptotic field using a partition of unity method (PUM). The crack faces behind the tip(s) are modelled independently of the mesh by displacement jump functions. The additional coefficients corresponding to the enrichments at the nodes of the elements surrounding the crack tip are forced to be equal by a penalty function method, thus ensuring that the displacement approximations reduce to the actual asymptotic fields adjacent to the crack tip. The numerical results so obtained are in excellent agreement with analytical and numerical results available in the literature. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
6.
A concurrent multigrid method is devised for the direct estimation of stress intensity factors and higher‐order coefficients of the elastic crack tip asymptotic field. The proposed method bridges three characteristic length scales that can be present in fracture mechanics: the structure, the crack and the singularity at the crack tip. For each of them, a relevant model is proposed. First, a truncated analytical reduced‐order model based on Williams' expansion is used to describe the singularity at the tip. Then, it is coupled with a standard extended finite element (FE) method model which is known to be suitable for the scale of the crack. A multigrid solver finally bridges the scale of the crack to that of the structure for which a standard FE model is often accurate enough. Dedicated coupling algorithms are presented and the effects of their parameters are discussed. The efficiency and accuracy of this new approach are exemplified using three benchmarks. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
A super‐element for the dynamic analysis of two‐dimensional crack problems is developed based on the scaled boundary finite‐element method. The boundary of the super‐element containing a crack tip is discretized with line elements. The governing partial differential equations formulated in the scaled boundary co‐ordinates are transformed to ordinary differential equations in the frequency domain by applying the Galerkin's weighted residual technique. The displacements in the radial direction from the crack tip to a point on the boundary are solved analytically without any a priori assumption. The scaled boundary finite‐element formulation leads to symmetric static stiffness and mass matrices. The super‐element can be coupled seamlessly with standard finite elements. The transient response is evaluated directly in the time domain using a standard time‐integration scheme. The stress field, including the singularity around the crack tip, is expressed semi‐analytically. The stress intensity factors are evaluated without directly addressing singular functions, as the limit in their definitions is performed analytically. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
New enrichment functions are proposed for crack modelling in orthotropic media using the extended finite element method (XFEM). In this method, Heaviside and near‐tip functions are utilized in the framework of the partition of unity method for modelling discontinuities in the classical finite element method. In this procedure, by using meshless based ideas, elements containing a crack are not required to conform to crack edges. Therefore, mesh generation is directly performed ignoring the existence of any crack while the method remains capable of extending the crack without any remeshing requirement. Furthermore, the type of elements around the crack‐tip remains the same as other parts of the finite element model and the number of nodes and consequently degrees of freedom are reduced considerably in comparison to the classical finite element method. Mixed‐mode stress intensity factors (SIFs) are evaluated to determine the fracture properties of domain and to compare the proposed approach with other available methods. In this paper, the interaction integral (M‐integral) is adopted, which is considered as one of the most accurate numerical methods for calculating stress intensity factors. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents a coupling technique for integrating the element‐free Galerkin method (EFGM) with the fractal finite element method (FFEM) for analyzing homogeneous, isotropic, and two‐dimensional linear‐elastic cracked structures subjected to mixed‐mode (modes I and II) loading conditions. FFEM is adopted for discretization of the domain close to the crack tip and EFGM is adopted in the rest of the domain. In the transition region interface elements are employed. The shape functions within interface elements which comprise both the EFG and the finite element (FE) shape functions, satisfies the consistency condition thus ensuring convergence of the proposed coupled EFGM–FFEM. The proposed method combines the best features of EFGM and FFEM, in the sense that no special enriched basis functions or no structured mesh with special FEs are necessary and no post‐processing (employing any path independent integrals) is needed to determine fracture parameters, such as stress‐intensity factors (SIFs) and T‐stress. The numerical results show that SIFs and T‐stress obtained using the proposed method are in excellent agreement with the reference solutions for the structural and crack geometries considered in the present study. Also, a parametric study is carried out to examine the effects of the integration order, the similarity ratio, the number of transformation terms, and the crack length to width ratio on the quality of the numerical solutions. A numerical example on mixed‐mode condition is presented to simulate crack propagation. As in the proposed coupled EFGM–FFEM at each increment during the crack propagation, the FFEM mesh (around the crack tip) is shifted as it is to the new updated position of the crack tip (such that FFEM mesh center coincides with the crack tip) and few meshless nodes are sprinkled in the location where the FFEM mesh was lying previously, crack‐propagation analysis can be dramatically simplified. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
An analytical solution has been attained to establish the closed form expression of stress intensity factor at the tip of a semi‐infinite crack, dynamically propagating in an initially stressed transversely isotropic poroelastic strip due to Love‐type wave for the case of concentrated force of constant intensity as well as for the case of constant load. The study presents the sound effect of various affecting parameters viz. speed of the crack, length of the crack, horizontal compressive/tensile initial stress, vertical compressive/tensile initial stress, porosity parameter and anisotropy parameter on the stress intensity factor. In order to delineate the effects of these aforementioned parameters on the stress intensity factor graphically, numerical simulations have been accomplished. One of the major highlight of the paper is the comparative study carried out for horizontal compressive/tensile initial stress, vertical compressive/tensile initial stress, porosity parameter and anisotropy parameter with the case when the strip is isotropic, non‐porous and free from initial stresses. Wiener–Hopf technique and the Fourier integral transform has been effectuated for the procurement of the closed form expression (exact solution) of stress intensity factor.  相似文献   

11.
Abstract

This paper analyzes the mode‐III stress intensity factor of an inclined crack, embedded in a thin layer, bonded to a half plane, subjected to arbitrary distributed anti‐plane loads. Special alternating procedures are presented to evaluate the mode‐ III S.I.F. and the numerical results confirm the validity of the proposed alternating procedure. The solution of a bi‐material problem in an infinite plane with an inclined crack and the analytical solution of a thin layer, without crack, bonded to a half plane, subjected to an anti‐plane point force applied on the boundary are referred to as fundamental solutions. By using these fundamental solutions and alternating procedures, the stress intensity factors of a crack in a thin layer bonded to a half plane are evaluated. The numerical results of some reduced problems are computed and excellent agreements with existing solutions are obtained.  相似文献   

12.
A set of hypersingular integral equations of a three-dimensional finite elastic solid with an embedded planar crack subjected to arbitrary loads is derived. Then a new numerical method for these equations is proposed by using the boundary element method combined with the finite-part integral method. According to the analytical theory of the hypersingular integral equations of planar crack problems, the square root models of the displacement discontinuities in elements near the crack front are applied, and thus the stress intensity factors can be directly calculated from these. Finally, the stress intensity factor solutions to several typical planar crack problems in a finite body are evaluated. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
14.
A method for evaluating mode I, mode II and mixed-mode stress intensity factors from in-plane displacement fields using the method of nonlinear least-squares is proposed in this paper. Along with stress intensity factors, crack tip location and rigid body displacement components are determined simultaneously from both displacement components obtained using full-field optical methods or numerical methods. The effectiveness is validated by applying the proposed method to mixed-mode displacement fields obtained through digital image correlation, displacement fields obtained by analysis using elasto-plastic finite element method, and displacement fields around a fatigue crack obtained by electronic speckle pattern interferometry. Results show that the proposed method can extract stress intensity factors from the displacement fields both accurately and easily. Furthermore, they can be determined even if the material at a crack tip exhibits small-scale yielding. It is expected that the proposed method is applicable to various fracture problems during experimental and numerical evaluation of structural components.  相似文献   

15.
An analytical method for mixed-mode (mode I and mode II) propagation of pressurized fractures in remotely compressed rocks is presented in this paper. Stress intensity factors for such fractured rocks subjected to two-dimensional stress system are formulated approximately. A sequential crack tip propagation algorithm is developed in conjunction with the maximum tensile stress criterion for crack extension. For updating stress intensity factors during crack tip propagation, a dynamic fictitious fracture plane is used. Based on the displacement correlation technique, which is usually used in boundary element/finite element analyses, for computing stress intensity factors in terms of nodal displacements, further simplification in the estimation of crack opening and sliding displacements is suggested. The proposed method is verified comparing results (stress intensity factors, propagation paths and crack opening and sliding displacements) with that obtained from a boundary element based program and available in literatures. Results are found in good agreements for all the verification examples, while the proposed method requires a trivial computing time.  相似文献   

16.
For one kind of finite‐boundary crack problems, the cracked equilateral triangular cross‐section tube, an analytical and very simple method to determine the stress intensity factors has been proposed based on a new concept of crack surface widening energy release rate and the principle of virtual work. Different from the classical crack extension energy release rate, the crack surface widening energy release rate can be defined by the G*‐integral theory and expressed by stress intensity factors. This energy release rate can also be defined easily by the elementary strength theory for slender structures and expressed by axial strains and loads. These two forms of crack surface widening energy release rate constitute the basis of a new analysis method for cracked tubes. From present discussions, a series of stress intensity factors are derived for cracked equilateral triangular cross‐section tubes. Actually, the present method can also be applied to cracked polygonal tubes.  相似文献   

17.
This study offers novel progresses for a semianalytical method to simulate 2D propagation of cracks based on linear elastic fracture mechanics. For this purpose, a new algorithm is proposed on the basis of the linear elastic fracture mechanics for crack propagation in single‐mode and mixed mode. Herein, discretization is only performed on the boundaries of the problem by using specific subparametric elements and higher‐order Chebyshev polynomials as mapping functions. Implementing the weighted residual method and by taking Clenshaw‐Curtis numerical quadrature, diagonal Euler's differential equations are obtained. Consequently, once the local coordinate origin is assumed at the tip of the crack, the stress intensity factors can be derived directly. In accordance with the rate of maximum energy release as a propagation criterion and by proposing a new quasi‐automatic remeshing procedure based on domain division, the crack propagation is applied here. Based on the new presented algorithm, application of the new semianalytical method to crack propagation analysis is more flexible and efficient. By taking this advantage, relatively coarse and simple discretization compared with other computational methods may be used. By modelling 4 benchmark problems with a few numbers of degrees of freedom, the validity and accuracy of the current method is illustrated. Results show that the presented algorithm is applicable for efficient and precise prediction of crack trajectories.  相似文献   

18.
In this study the fracture mechanics parameters, including the strain energy release rate, the stress intensity factors and phase angles, along the curvilinear front of a three-dimensional bimaterial interface crack in electronic packages are considered by using finite element method with the virtual crack closure technique (VCCT). In the numerical procedure normalized complex stress intensity factors and the corresponding phase angles (Rice, J Appl Mech 55:98–103, 1988) are calculated from the crack closure integrals for an opening interface crack tip. Alternative procedures are also described for the cases of crack under inner pressure and crack faces under large-scale contact. Validation for the procedure is performed by comparing numerical results to analytical solutions for the problems of interface crack subjected to either remote tension or mixed loading. The numerical approach is then applied to study interface crack problems in electronic packages. Solutions for semi-circular surface crack and quarter-circular corner crack on the interface of epoxy molding compound and silicon die under uniform temperature excursion are presented. In addition, embedded corner delaminations on the interface of silicon die and underfill in flip-chip package under thermomechanical load are investigated. Based on the distribution of the fracture mechanics parameters along the interface crack front, qualitative predictions on the propensity of interface crack propagation under thermomechanical loads are given.  相似文献   

19.
裂纹面荷载作用下多裂纹应力强度因子计算   总被引:1,自引:0,他引:1  
该文基于比例边界有限元法计算了裂纹面荷载作用下平面多裂纹应力强度因子.比例边界有限元法可以给出裂纹尖端位移场和应力场的解析表达式,该特点可以使应力强度因子根据定义直接计算,同时不需要对裂纹尖端进行特殊处理.联合子结构技术可以计算多裂纹问题的应力强度因子.数值算例表明该文方法是有效且高精确的,进而推广了比例边界有限元法的...  相似文献   

20.
A coupled model resulting from the boundary element method and eigen‐analysis is proposed in this paper to analyse the stress field at crack tip. This new combine method can yield several terms of the non‐singular stress in the Williams asymptotic expansion. Then the maximum circumferential stress (MCS) criterion taken the non‐singular stress into account is introduced to predict the brittle fracture of cracked structures. Two earlier experiments are re‐examined by the present numerical method and the role of the non‐singular stress in the brittle fracture is investigated. Results show that if more terms of non‐singular stress are taken into account, the predicted crack propagation direction and the critical loading by MCS criterion are much closer to the existing experimental results, especially for dominating mode II loading conditions. Moreover, numerical results manifest that Williams series expansion can describe the stress field further from the crack tip if more non‐singular stress terms are adopted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号