共查询到6条相似文献,搜索用时 0 毫秒
1.
P. Karvan A. Varvani‐Farahani 《Fatigue & Fracture of Engineering Materials & Structures》2019,42(1):295-306
The present study intends to characterize ratcheting response of several steel alloys subject to asymmetric loading cycles through coupling the Ahmadzadeh‐Varvani kinematic hardening rule with isotropic hardening rules of Lee and Zavrel, Chaboche, and Kang. The Ahmadzadeh‐Varvani kinematic hardening rule was developed to address ratcheting progress over asymmetric stress cycles with relatively a simple framework and less number of coefficients. Inclusion of isotropic hardening rules to the framework improved ratcheting response of materials mainly over the first stage of ratcheting. Lee and Zavrel model (ISO‐I) developed an exponential function to account for accumulated plastic strain as yield surface is expanded over stage I and early stage II of ratcheting. Isotropic models by Chaboche (ISO‐II) and Kang (ISO‐III) encountered yield surface evolution in the framework by introducing an internal variable that takes into account the prior maximum plastic strain range. The choice of isotropic hardening model coupled to the kinematic hardening model is highly influenced by material softening/hardening response. 相似文献
2.
Ratcheting progress at notch root of 1045 steel samples over asymmetric loading cycles: Experiments and analyses 下载免费PDF全文
K. Kolasangiani M. Shariati K. Farhangdoost A. Varvani‐Farahani 《Fatigue & Fracture of Engineering Materials & Structures》2018,41(9):1870-1883
The present study examines ratcheting response of steel samples with various notch diameters through conducting several cyclic tests. Ratcheting strain values were measured through strain gauges mounted at different distances from the notch root. Local ratcheting at the notch region was highly influenced by notch diameter, notch shape, distance from the notch root, and magnitude of the nominal mean/amplitude of loading cycles. Nominal force‐controlled cycles were kept below the yield point and the Neuber's rule accommodated for the maximum/minimum local stress components along those local strains measured through the strain gauges at the notch region. Plastic strains at the vicinity of notch root over loading cycles were further accumulated by means of the Chaboche hardening model. The local ratcheting strain while progressed at the notch root plastic zone over loading cycles resulted in mean stress relaxation controlled by the model. 相似文献
3.
G. R. AHMADZADEH A. VARVANI‐FARAHANI 《Fatigue & Fracture of Engineering Materials & Structures》2012,35(10):962-970
This study intends to investigate the concurrent interaction of fatigue damage and ratcheting strain in two commonly used steel alloys of (American Society for Testing and Materials) ASTM A‐516 Gr.70 and 42CrMo, respectively for pressure vessels and high grade machinery parts over uniaxial stress cycles. Ratcheting extension and fatigue damage progress were both characterized cycle‐by‐cycle over life cycles of tested materials. The interaction of ratcheting and fatigue damage was defined based on mechanistic parameters involving the effects of mean stress, stress amplitude and cyclic softening/hardening response of materials. The extent of ratcheting effect was defined by product of average ratcheting strain per cycle, and maximum stress value during a cycle, while fatigue damage was analysed based on earlier developed energy‐based models of Xia–Ellyin, and Smith–Watson–Topper. Overall damage due to ratcheting and fatigue was calibrated through a weighting factor at various mean/ cyclic amplitude stresses. An algorithm was developed to evaluate overall damage due to ratcheting and fatigue stress cycles of materials subjected to various mean and amplitude stresses. The estimated lives at different mean stresses and stress amplitudes for ASTM A‐516 Gr.70 and 42CrMo samples showed good agreements as compared with those of reported experimental data. 相似文献
4.
5.
Fatigue assessment of high‐frequency mechanical impact (HFMI)‐treated welded joints subjected to high mean stresses and spectrum loading 下载免费PDF全文
E. Mikkola M. Doré G. Marquis M. Khurshid 《Fatigue & Fracture of Engineering Materials & Structures》2015,38(10):1167-1180
The fatigue strength of welded joints can be improved with various post‐weld treatment methods. High‐frequency mechanical impact treatment is a residual stress modification technique that creates compressive residual stresses at the weld toe. However, these beneficial residual stresses may relax under certain loading conditions. In this paper, previously published fatigue data for butt and fillet welded joints subjected to high stress ratios and variable amplitude cyclic stresses were evaluated in relation to the current International Institute of Welding (IIW) recommendations on fatigue strength improvement and a proposed IIW design guideline for high‐frequency mechanical impact‐treated welded joints. The evaluation showed that the current IIW recommendations resulted in both non‐conservative and overly conservative fatigue strength estimations depending on the applied stress level, whereas the proposed fatigue assessment guideline fitted the current data well. 相似文献
6.
Experimental results and fatigue life evaluation of magnesium laserbeam‐welded joints under proportional and non‐proportional multiaxial fatigue loading with variable amplitudes 下载免费PDF全文
A. Bolchoun C. M. Sonsino H. Kaufmann T. Melz 《Materialwissenschaft und Werkstofftechnik》2017,48(2):88-100
Fatigue life of magnesium laserbeam‐welds (AZ31 and AZ61 alloys) was assessed experimentally under variable amplitude loadings. The specimens were subjected to load‐controlled cyclic loadings. The tests were carried out using a Gauss‐distributed amplitude sequence of length LS = 5 · 104 cycles and loading ratio R = –1 under pure axial, pure torsion as well as in‐phase and out‐of‐phase combined loadings. The notch stresses were obtained from a linear‐elastic FE‐model using the reference radius approach with rref = 0.05 mm. The stress‐based hypotheses were applied: Effective equivalent stress hypothesis (EESH), shear stress intensity hypothesis (SIH), Findley, and modified Gough‐Pollard. A non‐proportionality factor is introduced and steps required for computing are presented in order to improve fatigue life assessment under non‐proportional loadings. 相似文献