首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We found that integrin beta 1 subunit (INT beta 1)-immunoreactive Purkinje cells first appeared caudally at postnatal day (PD) 6 of rat and most Purkinje cells gradually became positive by PD 12. The expression of INT beta 1 was then suppressed in some of these cells, so that the positive Purkinje cells in the adult were organized into parasagittal bands interposed by negative cells throughout the vermis and hemispheres. When Purkinje cells were deprived of their climbing fiber innervation by inferior cerebellar pedunculotomy or by transplantation of cerebellar anlagen into the anterior eye chamber, the subsequent patterning of INT beta 1-positive Purkinje cells was not changed. In both reeler and weaver mice, the INT beta 1-positive parasagittal bands were observed, however, the Purkinje cells in the staggerer mice did not express INT beta 1 at any stage. These data suggest that the expression of INT beta 1 in Purkinje cells is genetically programmed in the developing cerebellum, and that the afferent synaptic inputs by climbing and parallel fibers are not prerequisites for INT beta 1 expression in Purkinje cells. Therefore, the unique distribution patterns of INT beta 1-positive Purkinje cells provides a new marker for postnatal development of rodent cerebella.  相似文献   

2.
The purpose of this study was to develop concepts that facilitate our understanding of why family caregivers of demented elderly persons can continue caregiving despite various difficulties of care. Twenty-six Japanese daughter or daughter-in-law caregivers of elderly parents with dementia who lived at home or in long-term care facilities were recruited through various senior service organizations in Japan. The caregivers underwent unstructured interviews, and the interview data were analyzed using the constant comparative method. Three categories emerged as reasons for care continuation: value of care, maintainers of value, and reinforcers of care continuation. Value of care came from societal norms and attachment, and was the basis of caregivers' motivation to continue care. Several maintainers of value and reinforcers of care continuation also emerged from the analysis. The contents and some longitudinal changes in these categories were explained. The findings highlight the need to assess these categories separately in order to develop appropriate interventions and they have implications for future research and policy development.  相似文献   

3.
PURPOSE: To evaluate Sturge-Weber-associated glaucoma using ultrasound biomicroscopy. METHOD: Case report. Clinical examination combined with ultrasound biomicroscopy was performed in a patient with Sturge-Weber-associated glaucoma. RESULTS: In the patient's left eye, which had Sturge-Weber-associated glaucoma, a 360-degree supraciliary effusion, dilated superficial and intrascleral vessels, and an open angle were detected by ultrasound biomicroscopy. CONCLUSION: The presence of dilated intrascleral vessels and supraciliary fluid support the hypothesis of increased episcleral venous pressure as the cause of elevated intraocular pressure in this syndrome.  相似文献   

4.
In this paper we report on monoclonal antibody 3H6 with unique specificities for development of the cerebellum. Immunohistochemical studies on normal and mutant mice suggest that it is primarily located in or on granule cell parallel fibers in the cerebellum. The only other region showing immunoreactivity is a small region of the hippocampus. The antigen is detected immunohistochemically as early as postnatal day 11 in the molecular layer of the cerebellum. In adult wild-type mice parallin expression is seen in the molecular layer and to a lesser degree in the internal granular layer. In the cerebella of two neurological granule cell-deficient mutants, weaver (wv) and staggerer (sg), parallin is not detected. However, in two Purkinje cell-deficient mutants, Purkinje cell degeneration (pcd) and nervous (nr), a more complex and interesting pattern is observed. These two mutants do have granule cells and parallel fibers and 3H6 immunoreactivity is observed. However, in both of these Purkinje cell-deficient mutants the 3H6 immunoreactivity is drastically reduced in regions where Purkinje cells have degenerated. Furthermore, in nr mutants, the antigen appears to be concentrated in regions of the parallel fiber that are in close proximity to Purkinje cells, suggesting its possible association with synapses. Taken together these results suggest that parallin is a marker of granule cells and their parallel fibers, its onset correlates with the formation of granule cell synapses on developing Purkinje cells, and it requires Purkinje cells for the maintenance of expression.  相似文献   

5.
In order to determine the consequences of atrophy to the cerebellar cortex on postural sensorimotor learning and performance, a natural mutation, Purkinje cell degeneration (pcd), was used. The homozygous mutants were compared to heterozygous non-ataxic controls on three static beams, two grids (vertical and tilted), a mobile beam (accelerating rotorod), and a coat-hanger. Although their posture was less stable than that of controls, the pcd mutants were not impaired in distance travelled or in latencies before falling on the static beams. Mutant performance on the grids was not impaired in comparison to controls, while a reduction of latencies before falling on the coat-hanger occurred only during the early part of training. On the accelerating rotorod, pcd mutants fell far sooner than controls and spent more time in passive rotation. By contrast to controls, pcd mutants were not able to improve with practice. Both mutants and controls were deficient during a retention test conducted 8 days after acquisition. The cerebellar cortex is critically involved in timing whole body movements during postural adjustments to a mobile beam but not to four types of immobile apparatus.  相似文献   

6.
Two alternative mechanisms are frequently used to describe ionic permeation of lipid bilayers. In the first, ions partition into the hydrophobic phase and then diffuse across (the solubility-diffusion mechanism). The second mechanism assumes that ions traverse the bilayer through transient hydrophilic defects caused by thermal fluctuations (the pore mechanism). The theoretical predictions made by both models were tested for halide anions by measuring the permeability coefficients for chloride, bromide, and iodide as a function of bilayer thickness, ionic radius, and sign of charge. To vary the bilayer thickness systematically, liposomes were prepared from monounsaturated phosphatidylcholines (PC) with chain lengths between 16 and 24 carbon atoms. The fluorescent dye MQAE (N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide) served as an indicator for halide concentration inside the liposomes and was used to follow the kinetics of halide flux across the bilayer membranes. The observed permeability coefficients ranged from 10(-9) to 10(-7) cm/s and increased as the bilayer thickness was reduced. Bromide was found to permeate approximately six times faster than chloride through bilayers of identical thickness, and iodide permeated three to four times faster than bromide. The dependence of the halide permeability coefficients on bilayer thickness and on ionic size were consistent with permeation of hydrated ions by a solubility-diffusion mechanism rather than through transient pores. Halide permeation therefore differs from that of a monovalent cation such as potassium, which has been accounted for by a combination of the two mechanisms depending on bilayer thickness.  相似文献   

7.
In mice homozygous for the 'viable motheaten' (mev) mutation, numbers of macrophage progenitor cells, particularly monocytes, were markedly increased in the bone marrow and spleen. Increased mobilization of these precursor cells to peripheral tissues and their differentiation to macrophages were evidenced by striking increases in macrophage numbers. Immunohistochemical double staining of tissue sections and flow cytometry analyses of single cell suspensions from these mice demonstrated CD5 (Ly-1)-positive macrophages in the peritoneal cavity, spleen and other tissues. Ly-1-positive macrophage precursor cells were demonstrated in the peritoneal cavity of the mev mice and developed in the omental milky spots. The development of marginal metallophilic and marginal zone macrophages was poor in the splenic white pulp and related macrophage populations were absent in the other lymphoid tissues. The numbers of epidermal Langerhans cells in the skin and T cell-associated dendritic cells in the thymic medulla, lymph nodes, and the other peripheral lymphoid tissues were decreased. However, increased numbers of dendritic cells accumulated in the lungs, liver, and kidneys. These abnormalities in development and differentiation of macrophages and dendritic cells may be ascribed to the deficiency in haematopoietic cell SHP-1 tyrosine phosphatase or may be a secondary consequence of abnormal microenvironments, (either constitutive or in response to inflammatory stimuli) in the haematopoietic and lymphopoietic organs and tissues of these mice.  相似文献   

8.
The purpose of this study was to evaluate the sensorimotor skills of a spontaneous mouse mutant, Purkinje cell degeneration (PCD), marked by selective cerebellar cortical atrophy on a treadmill activated at 1 of 2 speeds and at 1 of 3 slopes, requiring forward movements to avoid footshocks. There was no difference in latencies before falling from the belt between PCD mutants and controls during acquisition. However, PCD mutants were impaired on the fast treadmill during retention, implicating the cerebellum in the memory of a motor skill. During acquisition of the slow treadmill task at the 2 lowest slopes of inclination, PCD mutants spent more time walking than controls, an indication of a decreased ability of coordinating whole body movements. The same pattern of higher walking time on the slow treadmill in PCD mutants was evident during retention. These results indicate that the cerebellar cortex is involved in the acquisition and the retention of a task requiring equilibrium.  相似文献   

9.
Cerebellar Purkinje cells in the heterozygous Lurcher mutant undergo cell autonomous degeneration beginning in the second week of postnatal development and becoming almost total around 30-45 days. The Lurcher mutation was recently identified as gain-of-function defect in the delta 2 glutamate receptor causing a constitutive current leak, suggesting that +/Lc Purkinje cells die by an excitotoxic mechanism. In previous studies we have shown that overexpression of bcl-2, a key regulator of cell death, in the heterozygous Lurcher mutant does not prevent +/Lc Purkinje cell death. To investigate further the mechanisms of +/Lc Purkinje cell death, we have crossed +/Lc mutants with a second line of Hu-bcl-2 transgenics (NSE73a) that shows an earlier onset of transgene expression and higher expression levels. Analysis of eight +/Lc-NSE73a mutants (4 at 2 months and 4 at 5-6 months) showed that Hu-bcl-2 overexpression delayed, but ultimately could not prevent +/Lc Purkinje cell death.  相似文献   

10.
Converging lines of evidence from rabbits, rats, and humans argue for the crucial involvement of the cerebellum in classical conditioning of the eyeblink/nictitating membrane response in mammals. For example, selective lesions (permanent or reversible) of the cerebellum block both acquisition and retention of eyeblink conditioning. Correspondingly, electrophysiological and brain-imaging studies indicate learning-related plasticity in the cerebellum. The involvement of the cerebellum in eyeblink conditioning is also supported by stimulation studies showing that direct stimulation of the two major afferents to the cerebellum (the mossy fibers emanating from the pontine nucleus and climbing fibers originating from the inferior olive) can substitute for the peripheral conditioned stimulus (CS) and unconditioned stimulus (US), respectively, to yield normal behavioral learning. In the present study, we examined the relative contribution of the cerebellar cortex versus deep nuclei (specifically the interpositus nucleus) in eyeblink learning by using mutant mice deficient of Purkinje cells, the exclusive output neurons of the cerebellar cortex. We report that Purkinje cell degeneration (pcd) mice exhibit a profound impairment in the acquisition of delay eyeblink conditioning in comparison with their wild-type littermates. Nevertheless, the pcd animals did acquire a subnormal level of conditioned eyeblink responses. In contrast, wild-type mice with lesions of the interpositus nucleus were completely unable to learn the conditioned eyeblink response. These results suggest that both cerebellar cortex and deep nuclei are important for normal eyeblink conditioning.  相似文献   

11.
Mutations of the alpha1A calcium channel subunit have been shown to cause such human neurological diseases as familial hemiplegic migraine, episodic ataxia-2, and spinocerebellar ataxia 6 and also to cause the murine neurological phenotypes of tottering and leaner. The leaner phenotype is recessive and characterized by ataxia with cortical spike and wave discharges (similar to absence epilepsy in humans) and a gradual degeneration of cerebellar Purkinje and granule cells. The mutation responsible is a single-base substitution that produces truncation of the normal open reading frame beyond repeat IV and expression of a novel C-terminal sequence. Here, we have used whole-cell recordings to determine whether the leaner mutation alters calcium channel currents in cerebellar Purkinje cells, both because these cells are profoundly affected in leaner mice and because they normally express high levels of alpha1A. In Purkinje cells from normal mice, 82% of the whole-cell current was blocked by 100 nM omega-agatoxin-IVA. In Purkinje cells from homozygous leaner mice, this omega-agatoxin-IVA-sensitive current was 65% smaller than in control cells. Although attenuated, the omega-agatoxin-IVA-sensitive current in homozygous leaner cells had properties indistinguishable from that of normal Purkinje neurons. Additionally, the omega-agatoxin-IVA-insensitive current was unaffected in homozygous leaner mice. Thus, the leaner mutation selectively reduces P-type currents in Purkinje cells, and the alpha1A subunit and P-type current appear to be essential for normal cerebellar function.  相似文献   

12.
13.
Sodium currents and action potentials were characterized in Purkinje neurons from ataxic mice lacking expression of the sodium channel Scn8a. Peak transient sodium current was approximately 60% of that in normal mice, but subthreshold sodium current was affected much more. Steady-state current elicited by voltage ramps was reduced to approximately 30%, and resurgent sodium current, an unusual transient current elicited on repolarization following strong depolarizations, was reduced to 8%-18%. In jolting mice, with a missense mutation in Scn8a, steady-state and resurgent current were also reduced, with altered voltage dependence and kinetics. Both spontaneous firing and evoked bursts of spikes were diminished in cells from null and jolting mice. Evidently Scn8a channels carry most subthreshold sodium current and are crucial for repetitive firing.  相似文献   

14.
The authors have previously demonstrated that Purkinje cell-degeneration (pcd) mutant mice are impaired in eyeblink conditioning (Chen et al., 1996a). The present study addresses the following 3 questions: (a) whether pcd mice perceive the conditioned and unconditioned stimuli as well as the wild-type mice, (b) whether pcd mice have a normal sensitization level, and (c) whether the residual learning in pcd mice is cerebellum-dependent. Results indicated that the pcd mice exhibited normal tone-induced responses in the cochlear nucleus and normal sensitivity to heat-induced pain. They showed a similar level of sensitization as the wild-type mice and were completely unable to learn conditioned eyeblinks after bilateral lesions aimed at the anterior interpositus nucleus. Thus, pcd mice are partially impaired in eyeblink conditioning because of a deficiency in learning mechanisms, and the residual learning in the pcd mice is mediated by the cerebellar nuclei. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

15.
Dilute-opisthotonus (dop) is a spontaneous ataxic mutation in the rat, regulated by an autosomal recessive gene. Immunohistochemical staining with anti-inositol 1,4,5-trisphosphate receptor antibody and electron microscopic examinations revealed that the endoplasmic reticulum in dendritic spines of Purkinje cell was missing in the ataxic rat. This could impair the intracellular signal transduction in the parallel fiber-Purkinje cell synapse, and be a cause of the severe ataxic movement.  相似文献   

16.
BACKGROUND: Hypoalphalipoproteinemia is the most common lipoprotein abnormality in patients with coronary artery disease, yet its causes are unknown. METHODS AND RESULTS: We show that the homozygous staggerer (sg/sg) mutant mouse, which carries a deletion within the nuclear receptor RORalpha gene, develops severe atherosclerosis when maintained on an atherogenic diet. In addition, sg/sg mice display a profound hypoalphalipoproteinemia, which is associated with decreased plasma levels of the major HDL proteins, apolipoprotein (apo) A-I and apoA-II. This decrease in HDL levels in sg/sg mice is due to lowered apoA-I gene expression in the intestine but not in the liver. ApoA-II gene expression is unaffected. CONCLUSIONS: These results suggest that the RORalpha gene contributes to the plasma HDL level and susceptibility to atherosclerosis.  相似文献   

17.
Data from child and adolescent emergency mental health screening episodes prior and subsequent to privatized Medicaid managed care in Massachusetts are used to investigate the relationship between payer source and disposition and to compare the match between clinical need and disposition level of care. Having Medicaid as the payer in the post-Medicaid managed care period decreased the odds of hospitalization by nearly 60%. None of the clinical need variables that contributed to hospitalization for Medicaid episodes in the pre-Medicaid managed care period were significant in the post-Medicaid managed care period. Multiple forces shaping professional standards, decision making, and quality of care are described. Public sector agencies must lay the groundwork for comprehensive evaluation prior to the implementation of privatized Medicaid managed care initiatives.  相似文献   

18.
19.
We have immunohistochemically investigated the expression of a reeler gene-related antigen in the mouse cerebellum by using a monoclonal antibody, CR-50. This antibody probes a distinct allelic antigen present in normal but not in reeler mutant mice, and this antigen is localized in the brain regions in which morphological abnormalities occur in reeler mice (Ogawa et al., Neuron 14: 899-912, 1995). The developing normal cerebellum showed transient immunoreactivity to CR-50 in a limited set of neurons and in the extracellular space near the pial surface. An early population of CR-50-labeled cells emerged on embryonic day (E) 13 along the dorsal cerebellar surface, comprising the nuclear transitory zone (NTZ). Bromodeoxyuridine labeling revealed the time of origin of these cells to be at E11-12. From E14 to E18, some CR-50-labeled cells were stacked in the inner border of the external granular layer (EGL), whereas others were scattered in deep areas, such as the cerebellar nuclei and the surrounding intermediate zone or white matter. In the first postnatal week, these subcortical structures became immunonegative. However, CR-50 antigen was continuously produced until the second postnatal week by another population of cells occupying i) the premigratory zone (PMZ), the inner half of the EGL, and ii) the internal granular layer (IGL). These later CR-50-positive cells were smaller than the earlier type and showed the morphology typical of granule neurons. Both types of CR-50-labeled cells were positive for a DNA-binding protein, zic. By treating living cerebellar slices with CR-50, the extracellular antigen was localized as a puncutate staining pattern in the NTZ, PMZ, and molecular layer (ML), but not in the subcortical regions and IGL. Purkinje cells were negative for CR-50 and aligned as a monolayer adjacent to the PMZ, though their dendritic trees were closely associated with the extracellular CR-50-antigen in the PMZ and ML. Staining of dissociated cells suggested that the extracellular antigen is initially present throughout the surfaces of the CR-50/anti-zic double positive neurons, and is then rearranged to concentrate on their processes contacting with Purkinje cells. The spatiotemporal expressions of the CR-50 antigen in the cerebellum are consistent with the possibility that this antigen is involved in cell-cell interactions related to the histogenetic assembly of Purkinje cells.  相似文献   

20.
Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurological disorder caused by the expansion of a CAG repeat encoding a polyglutamine tract. Work presented here describes the behavioral and neuropathological course seen in mutant SCA1 transgenic mice. Behavioral tests indicate that at 5 weeks of age mutant mice have an impaired performance on the rotating rod in the absence of deficits in balance and coordination. In contrast, these mutant SCA1 mice have an increased initial exploratory behavior. Thus, expression of the mutant SCA1 allele within cerebellar Purkinje cells has divergent effects on the motor behavior of juvenile animals: a compromise of rotating rod performance and a simultaneous enhancement of initial exploratory activity. With age, these animals develop incoordination with concomitant progressive Purkinje neuron dendritic and somatic atrophy but relatively little cell loss. Therefore, the eventual development of ataxia caused by the expression of a mutant SCA1 allele is not the result of cell death per se, but the result of cellular dysfunction and morphological alterations that occur before neuronal demise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号