首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
未知环境下移动机器人同步地图创建与定位研究进展   总被引:3,自引:1,他引:3  
移动机器人同步地图创建与定位(SLAM)是移动机器人的核心研究课题.本文对SLAM的最新研究进展和关键技术进行了综述:并从地图创建模型、计算复杂度和算法鲁棒性等方面对现有方法进行了对比分析.最后总结分析了SLAM研究存在的难题,探讨了今后的发展方向.  相似文献   

2.
移动机器人同时定位与地图创建研究进展   总被引:15,自引:1,他引:15  
罗荣华  洪炳镕 《机器人》2004,26(2):182-186
对移动机器人的同时定位与地图创建􀁫(Simultaneous Localization and Mapping)的最新研究进行了综述.指出SLAM 面临的问题,介绍了SLAM的基本实现方法.通过对各种改进的SLAM实现方法的性能对比,详尽地分析了如何降低SLAM的复杂度、提高SLAM的鲁棒性等关键技术问题,同时对多机器人协作的SLAM也进行了论述.探讨了SLAM的研究与发展方向.􀁱  相似文献   

3.
基于粒子滤波器的移动机器人定位和地图创建研究进展   总被引:2,自引:0,他引:2  
余洪山  王耀南 《机器人》2007,29(3):281-289
首先,对粒子滤波器的原理和研究进展进行了综述.然后,介绍了基于粒子滤波器的移动机器人定位研究进展.其次,给出了粒子滤波器在移动机器人地图创建领域的最新成果.最后,对粒子滤波器在移动机器人研究领域的未来发展方向进行了展望.  相似文献   

4.
一种基于特征地图的移动机器人SLAM方案   总被引:1,自引:0,他引:1  
设计了一种结构化环境中基于特征地图的地图创建方案;采用激光测距仪进行特征地图创建,利用"聚合-分害虫-聚合"的方法来提取线段表示环境信息实现局部地图创建;为了实现移动机器人的同时定位与地图创建,采用扩展卡尔曼滤波方法对机器人的位姿与地图信息进行预测及更新,结合状态估计和数据关联理论,实验显示x的校正量保持在±0.9cm之内;y的校正量保持在±2.5cm之内;θ的校正量在±1.2之内,实现了基于扩展卡尔曼滤波器的SLAM.  相似文献   

5.
庄严  王伟  王珂  徐晓东 《自动化学报》2005,31(6):925-933
该文研究了部分结构化室内环境中自主移动机器人同时定位和地图构建问题.基于激光和视觉传感器模型的不同,加权最小二乘拟合方法和非局部最大抑制算法被分别用于提取二维水平环境特征和垂直物体边缘.为完成移动机器人在缺少先验地图支持的室内环境中的自主导航任务,该文提出了同时进行扩展卡尔曼滤波定位和构建具有不确定性描述的二维几何地图的具体方法.通过对于SmartROB-2移动机器人平台所获得的实验结果和数据的分析讨论,论证了所提出方法的有效性和实用性.  相似文献   

6.
介绍了在室内未知环境下移动机器人利用激光雷达、电子罗盘和里程计等传感器信息创建特征地图的方法;从激光雷达数据中提取直线特征作为地图的主要环境描述特征,采用构建直线模板的方法对雷达数据进行分簇,通过最小二乘法拟合出相应的直线并对冗余地图线段进行合并,从而得到较精确的特征地图;实验表明该机器人建立的环境特征地图是精确有效的,且与栅格地图相比数据量小,可进一步用于机器人的避障、路径规划等复杂任务.  相似文献   

7.
室内自主式移动机器人定位方法   总被引:3,自引:0,他引:3  
定位是确定机器人在其工作环境中所处位置的过程.应用各种传感器感知信息实现可靠的定位是自主式移动机器人最基本、也是最重要的一项功能之一.本文对室内自主式移动机器人的定位技术进行了综述,介绍了当前自主式移动机器人定位方法的研究现状.同时,对国内外具有典型性的研究方法进行了较洋细的介绍,并重点提出了几种室内自主式移动机器人通用的定位方法,对其中的地图构造、位姿估计方法进行了详细介绍.最后,论述了自主式移动机器人定位系统与地图构造中所面临的主要问题及其解决方法并指出了该领域今后的研究方向.  相似文献   

8.
室内自主移动机器人定位方法研究综述   总被引:25,自引:0,他引:25  
李群明  熊蓉  褚健 《机器人》2003,25(6):560-567
定位是确定机器人在其作业环境中所处位置的过程.应用传感器感知信息实现可靠的定位是自主移动机器人最基本、也是最重要的一项功能之一.本文对室内自主移动机器人的定位技术进行了综述,提出了一种通用的控制结构,对其中与定位相关的地图结构、位姿估计方法进行了详细介绍,指出了地图构造、全局定位、数据关联、同步定位与地图构造、信息融合及协同定位所应用的方法及存在的问题.  相似文献   

9.
移动机器人同时定位和地图创建是实现移动机器人完全自主导航的关键.本文提出了一个通用的移动机器人同时定位与地图创建基本框架,接着对扩展卡尔曼滤波器算法进行了详细的分析,最后通过基于点特征和扩展卡尔曼滤波器的同时定位与地图创建仿真实验,验证了框架的可行性.目的是为开展同时定位与地图创建的研究提供一种可行的研究方案,以推动我国移动机器人技术的发展.  相似文献   

10.
在不使用几何参数描述大规模环境的前提下, 提出了基于分治法的同步定位与环境采样地图创建 (Simultaneous localization and sampled environment mapping, SLASEM)算法来同时进行定位与地图创建. 该算法采用环境采样地图(Sampled environment map, SEM)描述环境, 使算法不局限于用几何参数描述的规则环境. 同时该算法实时地创建局部地图, 并基于分治法合并局部地图, 保证了算法的实时性. 在合并两个子地图时, 算法首先从环境采样地图中提取出角点, 利用角点约束初步更新子地图; 然后利用符号正交距离函数作为虚拟测量函数, 再次细微地更新子地图; 最后将两个子地图合并到一个大地图, 约简冗余的环境采样粒子, 以提高地图的紧凑性. 两个实验的结果验证了所提算法的有效性和实时性.  相似文献   

11.
研究全景视觉机器人同时定位和地图创建(SLAM)问题。针对普通视觉视野狭窄, 对路标的连续跟踪和定位能力差的问题, 提出了一种基于改进的扩展卡尔曼滤波(EKF)算法的全景视觉机器人SLAM方法, 用全景视觉得到机器人周围的环境信息, 然后从这些信息中提取出环境特征, 定位出路标位置, 进而通过EKF算法同步更新机器人位姿和地图库。仿真实验和实体机器人实验结果验证了该算法的准确性和有效性, 且全景视觉比普通视觉定位精度更高。  相似文献   

12.
基于组合EKF的自主水下航行器SLAM   总被引:2,自引:0,他引:2  
针对标准扩展卡尔曼滤波(EKF)在噪声统计特性不准确、系统模型与实际模型无法完全匹配情况下滤波精度严重下降的问题,提出了一种基于Sage-Husa自适应EKF和强跟踪EKF组合的SLAM(同步定位与地图构建)算法.首先建立了AUV(自主水下航行器)的动力学模型、特征模型以及传感器的测量模型,然后通过Hough变换进行特征提取,最终采用组合EKF实现了自主水下航行器的同步定位与地图构建.海试数据仿真试验表明本文所提方法降低了噪声统计特性时变以及模型不精确对系统的影响,提高了SLAM系统的精确性和鲁棒性.  相似文献   

13.
电缆隧道空间小、环境复杂,因老化及腐蚀易发生火灾,巡检机器人可以通过日常巡检提早发现隐患,但电缆隧道环境存在定位难度大、地图信息缺失的问题。针对以上问题,该文提出了电缆隧道环境下使用IMU、车轮里程计、激光雷达多传感器数据融合的定位建图方法,并设计了该方法的电缆隧道定位建图系统。为了验证定位建图系统的有效性,该文使用该系统进行实验测试,定位、建图能力均可满足巡检要求。  相似文献   

14.
基于全景视觉的移动机器人同步定位与地图创建研究   总被引:8,自引:0,他引:8  
提出了一种基于全景视觉的移动机器人同步定位与地图创建(Omni-vSLAM)方法.该方法提取 颜色区域作为视觉路标;在分析全景视觉成像原理和定位不确定性的基础上建立起系统的观测模型,定位出 路标位置,进而通过扩展卡尔曼滤波算法(EKF)同步更新机器人位置和地图信息.实验结果证明了该方法在 建立环境地图的同时可以有效地修正由里程计造成的累积定位误差.  相似文献   

15.
胡丹丹  于沛然  岳凤发 《计算机应用研究》2021,38(6):1800-1803,1808
在室内同时定位与建图(SLAM)的实际应用中,对称单一结构环境易造成激光SLAM错误建图,低质量光照或低纹理环境易造成视觉SLAM失效.针对上述室内退化环境,提出一种将激光、视觉、惯性测量单元(IMU)进行紧耦合的LVI-SLAM方法.在该方法前端,设计视觉评价环节对视觉信息置信度进行自适应调整;在该方法后端,进行位姿图优化以及多传感器回环抑制累积误差.视觉评价实验、单走廊实验以及大场景建图实验的结果证明了该方法的鲁棒性和精确性.在面积为1050 m2的复杂室内环境下,采用该方法建图误差为0.9%.  相似文献   

16.
由于移动机器人处在未知并且不确定的环境中,主要采用基于概率的方法对同时定位与地图构建(SLAM)进行描述。本文建立了SLAM问题的概率表示模型,并对在解决SLAM问题中用最常用的扩展卡尔曼滤波(EKF)算法以及迭代扩展卡尔曼滤波(IEKF)算法进行描述。本文针对两种算法的缺陷和不足,将应用于跟踪领域的修正迭代扩展卡尔曼滤波算法(MIEKF)与SLAM思想结合,提出了一种新的基于MIEKF的SLAM算法。通过基于点特征的SLAM实验验证了该算法的有效性。  相似文献   

17.
基于量测噪声和观测次数的EKF-SLAM一致性分析   总被引:1,自引:1,他引:1  
Inconsistency is a fundamental problem in simultaneous localization and mapping (SLAM). Previous works from predecessors have studied the inconsistent problem of extended Kalman filter (EKF) SLAM algorithm focusing on the linearization errors. In this paper, we studied the inconsistency issue of EKF SLAM in theory based on measurement noise and observation time. In a simplified situation, we deduced some useful theorems of estimated covariance matrix. Then, we made use of them to investigate the inconsistency issue. We showed that the measurement noise and the observation times can drive the EKF SLAM out of consistency. Moreover, we demonstrated the explicit effects of measurement noise and observation times on inconsistency of the EKF SLAM. Our simulation experiments verified the results.  相似文献   

18.
许宇伟  颜文旭  吴炜 《机器人》2022,44(2):176-185
在走廊、隧道等相似场景下,传统激光SLAM(同步定位与地图创建)算法由于观测数据的相似性,算法性能将严重劣化,甚至完全失效。为解决该问题,本文在hdl_graph_slam算法的基础上,首先基于匀速运动假设改进了运动预测模型,获得了更准确的初始位姿估计;然后通过引入局部地图概念实现点云的稠密化,改善了相似场景下前端里程计的性能。在室内实验中,场景的还原度达到了99.54%,较改进前提高了57.25%;在室外实验中,里程计漂移由原先的111.62\m降至7.65\m。实验结果表明,提出的算法在室内和室外的相似场景中均能带来显著的性能提升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号