首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Phaseolus lunatus starch was modified by esterification with octenyl succinic anhydride (OSA) and reaction effect evaluated in terms of chemical composition, gelatinization, pasting and emulsification properties. Succinylation was done using a 23 factorial design with four replicates of the central treatment. Evaluated factors and levels were OSA concentration (1% and 3%), pH (7 and 9) and reaction time (30 and 60 min). Succinyl group percentage was the response variable. The optimum treatment was a reaction with 3% OSA at pH 7 for 30 min, which produced 0.5083% succinyl groups and 0.0083° of substitution. No significant changes were observed in proximate composition between the native and derivative starches. Apparent amylose level decreased notably from 32.4% to 23.6% due to OSA inclusion. Succinylation decreased starch gelatinization temperature (75.3–64.6 °C), decreased enthalpy (10.7–9.7 J/g), increased viscosity (700–1000 BU), increased emulsifying capacity (0.47–0.53 ml oil/ml sample), and made emulsions more stable over time. Starch modification did not, however, improve stability in heating–cooling processes.  相似文献   

2.
Starch samples from ten mung bean cultivars grown in china were isolated, and their morphology, physicochemical, thermal, and pasting properties were evaluated. The objectives of the study were to investigate the starch properties and processing characteristics of different mung bean varieties, and to establish the basic foundation of improving the functionality of mung beans and their starch grown in the region. The mung bean starches showed the kidney-shaped, elliptical, small spherical and dome-shaped granules, and the starches granule size varied between 5 and 40 μm. Total starch content, amylose content, solubility, and swelling power ranged from 54.73% to 57.99%, 40.44% to 41.82%, 13.72% to 17.67%, and 17.27% to 20.55%, respectively. The pasting properties were determined using a rapid visco analyzer, and various mung bean starches exhibited different pasting profiles. Different starches differed in transition temperatures (T o, T p, and T c), gelatinization temperature range (ΔT r), and enthalpy of gelatinization (ΔH) according to differential scanning calorimeter analysis. Hydration coefficient, degree of gelatinization, and hardness of mung bean varieties ranged from 51.97% to 84.46%, 62.99% to 95.11%, and 26.07 N to 112.11 N, respectively. This study indicated that starches separated from different mung bean cultivars possess different physicochemical characteristics, and various mung beans cultivars showed diverse processing properties.  相似文献   

3.
甘肃主要杂豆淀粉理化特性分析   总被引:5,自引:0,他引:5  
以甘肃产三角豌豆、白豌豆、小白芸豆、麻豌豆为材料,采用湿磨法提取淀粉,以玉米、马铃薯及绿豆淀粉为对照,对杂豆淀粉的理化特性进行分析。结果表明:参试杂豆淀粉颗粒多呈卵圆形,偏光十字较明显,多呈“X”形和斜十字形,部分淀粉颗粒呈现明显多脐点现象,平均粒径为21~29μm,其中三角豌豆淀粉的粒径最大而麻豌豆淀粉颗粒最小;淀粉颗粒的结晶类型与绿豆淀粉相同,为C型。其直链淀粉含量远高于玉米淀粉和马铃薯淀粉,且麻豌豆>小白芸豆>白豌豆>三角豌豆淀粉。杂豆淀粉属限制型膨胀淀粉,起糊温度为72.6~78.8℃,且具有较好的热糊和冷糊稳定性,淀粉糊的透明度较高,但凝沉速度均极快,冻融稳定性也都较差。4种杂豆淀粉的理化特性与绿豆淀粉相近,可耐受高温处理,但不宜用于冷冻类食品的生产。  相似文献   

4.
Physicochemical properties of commercial mung bean starch isolated with lactic acid fermentation solution (LFS) and starches laboratory-prepared by using NaOH, Na2SO3 and distilled water as steeping liquors were examined with the aim of elucidating the effect of different steeping liquors on the properties of starches. Results indicated that the amylose content, granular morphology and X-ray diffraction pattern of starches isolated with different steeping liquors did not show obvious differences. However, the LFS-isolated starch had significantly (p < 0.05) higher weight percentage of longer B chains and B1 chains, a lower weight percentage of A chains and a lower ratio of short-to-long chains in amylopectin than those of the other preparations. Moreover, the LFS-isolated starch showed significantly (p < 0.05) lower pasting viscosity, a higher onset temperature, a narrower temperature range and a lower enthalpy of gelatinization than the other preparations. No significant differences on the physicochemical properties mentioned above were found among the laboratory-prepared starches. The results suggest that mung bean starch is degraded during isolation with lactic acid fermentation solution, which leads to the loss of starch granules with less integrity.  相似文献   

5.
The physico-chemical properties of starch from jackfruit seed and mung bean were investigated. Jackfruit seed starch had much higher resistant starch content (26.99%) than that of mung bean starch (4.04%). Furthermore, jackfruit seed starch had a higher gelatinization temperature (To) that required more gelatinization energy (ΔH) compared to mung bean starch. However, mung bean starch had higher amylose content and its granules were much larger than that of jackfruit seed starch. Mung bean starch had the highest peak viscosity, breakdown, and setback whereas jackfruit seed starch had the highest pasting temperature. Amylopectin chain length of mung bean starch contained higher proportion of short chains (degrees of polymerization 6–12) but lower proportion of very long chains (degrees of polymerization > 37 ) comparing with jackfruit seed starch. The X-ray diffraction patterns showed both starches to be Type-A crystallinity. In addition, both starch gels showed higher the storage modulus (G′) than the loss modulus (G?) designating as rubber like material. However, mung bean starch gel exhibited higher G’ and less tan δ than that of jackfruit seed starch indicating much stronger of gel structure.  相似文献   

6.
A comparison between the morphological, structural, thermal and viscoelastic properties of starches separated from pigeon pea, chickpea, field pea, kidney bean and blackgram was made. The shape of the starch granules in the different legumes varied from oval to elliptical or spherical. X-ray diffraction of the legume starches indicated a typical C-pattern (mixture of A- and B-type). Granules of blackgram and pigeon pea starch had a higher degree of crystallinity than those of field pea and kidney bean starches. Apparent amylose content of field pea, kidney bean, chickpea, blackgram and pigeon pea starch was 37.9%, 36.0%, 34.4-35.5%, 32.9-35.6% and 31.8%, respectively. Distribution of isoamylase-branched materials among the starches revealed that the proportions of long and short side chains of amylopectin ranged between 13.6-18.5% and 41.7-46.5%, respectively. Field pea and kidney bean starch had the highest apparent amylose content and the lowest amount of long side chains of amylopectin, respectively. Blackgram and pigeon pea starch possessed higher proportions of both long and short side chains of amylopectin than field pea and chickpea starches. The onset, peak and conclusion temperatures of gelatinization (To Tp and Tc, respectively) were determined by differential scanning calorimetry. To and Tc ranged from 59.3 to 77.3°C, 66.8 to 79.6°C, 55.4 to 67.6°C and 68.3 to 69.3°C, respectively, for chickpea, blackgram, field pea and kidney bean starch. The enthalpy of gelatinization (ΔHgel) of field pea, kidney bean, chickpea, blackgram and pigeon pea starches was 3.6, 3.0, 2.6-4.2, 1.6-1.7 and 2.6 J/g, respectively. Pastes of blackgram and pigeon pea starches showed lower storage and loss shear moduli G′ than field pea, kidney bean and chickpea starches. The changes in moduli during 10 h at 10°C revealed retrogradation in the order of: field pea> kidney bean> chickpea> blackgram> pigeon pea starch. In blackgram and pigeon pea starches, the lower proportion of amylose plus intermediate fraction and higher proportion of short and long side chains of amylopectin are considered responsible for the higher crystallinity, gelatinization temperature and enthalpy of gelatinization.  相似文献   

7.
ABSTRACT:  Chemical structure and physical properties of starches isolated from 5 domestic mung bean cultivars ( Gyungsun , Geumsung , Sunhwa , Eohul , and Jangan ) were examined. The granules were jelly bean like in shape and smooth on surface, and the size was within 10 to 30 μm. Mung bean starches displayed a CA-type crystalline structure when judged by the X-ray diffraction patterns. Branch chain-length distribution patterns of amylopectin (AP) revealed that peak chain length of APs was at either DP (degree of polymerization) 12 or DP13. Apparent amylose contents of 5 cultivars by iodine affinity test were 31.7% to 33.8%. Mung bean APs showed a unique molecular size distribution that has not been observed from other plant-derived starches. Two distinct peaks of AP fraction were identified on the size-exclusion chromatogram, and the ratios of these 2 peaks were different depending on the mung bean cultivars. Weight-average chain length (CLavg) of APs was in the range of 16.9 ( Eohul ) and 17.5 ( Geumsung ). The onset temperature ( T o) and enthalpy change (Δ H gel) of starch gelatinization were 54.6 to 60.2 °C and 11.6 to 13.2 J/g. The Δ H of the retrograded mung bean starches was 5.5 to 6.6 J/g, which indicated 44.5% to 52.7% of recrystallization. The pasting temperature, peak viscosity, and setback were 66.1 to 69.2 °C, 510 to 579 Rapid Visco Unit (RVU), and 66 to 90 RVU, respectively.  相似文献   

8.
Several commercial starch noodles made from legume, tuber, geshu (kudzu and sweet potato) and fernery starches were used to study the characteristics of starch in starch noodles and their effect on eating quality of starch noodles. Scanning electron microscopy observation found that the special inner structure of starch noodles was composed of some broken starch granules and some gel-like substances. Tuber and legume starches had the highest and lowest solubility, swelling power, swelling factor, setback, breakdown, peak viscosity, and final viscosity, respectively. Legume and tuber starches had the highest and lowest gelatinization temperature, respectively. Tuber and geshu starches had the highest amylose leaching rate, while legume starches owned the lowest value (p < 0.05). Tuber starches had the highest conclusion temperature of gelatinization (151.12~158.86°C). Fernery starches had the lowest value of retrogradation enthalpy (967.33 J/g dry starch). Legume starch noodles had the lowest broken rate (0.00~1.67%), swelling ratio (332.64~343.57%), and cooking loss (2.40~2.74%), and the highest hardness (87.47~93.29 g/mm2), shear deformation (0.49~0.52), and elasticity (0.58~0.62), However, tuber and fernery starch noodles did the opposite, tuber and legume starch noodles had the highest and lowest cohesiveness, respectively. All the above cooking and starch properties test results of starch noodles demonstrated that, compared with others, legume starch noodles are relatively well in eating quality. The correlation analysis showed that the cooking and physical quality of starch noodles could be perfected significantly by improving the swelling and pasting properties for starch of starch noodles, while thermal properties had no obvious influence on them.  相似文献   

9.
碾轧对绿豆淀粉的机械力化学效应   总被引:1,自引:1,他引:0  
以绿豆淀粉为原料,通过扫描电镜(SEM)、偏光显微镜(PLM)、激光扫描共聚焦显微镜(CLSM)、X-射线衍射(XRD)、差示扫描量热仪(DSC)、快速黏度分析仪(RVA)等手段研究碾轧处理对淀粉结构和性质影响,探究其相互关系并揭示碾轧对绿豆淀粉机械力化学效应。结果表明,碾轧处理3~6 h时,淀粉无定型区和部分结晶区发生破坏,水溶指数、膨胀度、透光率增大,热焓减小。碾轧处理9 h时,淀粉内部发生重结晶,颗粒表面形成球状凸起,脐点区域直链淀粉聚集导致膨胀度、透光率、峰值黏度下降,水溶指数、热焓值、糊化温度增大。碾轧处理12~24 h时,淀粉的结晶区域发生显著破坏,颗粒严重变形,从而使淀粉水溶指数、透光率增大,膨胀度、热焓值减小。根据机械力化学相关理论推断淀粉颗粒内部依次经过了受力阶段、聚集阶段、团聚阶段。  相似文献   

10.
《Food chemistry》2002,78(4):489-498
The physicochemical properties of starches from different cultivars of black bean, chick pea, lentil, navy bean, smooth pea and pinto bean were examined. Starch granule size ranged from 8 to 35 μm. The starch granules were round to elliptical with smooth surfaces. The total amylose content ranged from 23.0 to 29.5%, of which 6.0–14.9% was complexed by native lipid. All starches showed a ‘C’ type X-ray pattern. The peak at 2θ=5.54 (characteristic of B type starches) was most pronounced in pinto bean and black bean starches. Relative crystallinity followed the order: pinto bean>lentil∼smooth pea∼chick pea∼black bean∼navy bean. The swelling factor (at 80 °C) followed the order: black bean>smooth pea∼chick pea>lentil>navy bean>pinto bean, whereas, amylose leaching (at 80 °C) followed the order: lentil>smooth pea>chick pea>black bean>navy bean>pinto bean. Pinto bean starches showed the highest gelatinization transition temperatures and enthalpies of gelatinization, whereas, the highest gelatinization temperature range was exhibited by black bean starches. All legume starches exhibited high thermal stability during the holding cycle (at 95 °C) in the Brabender viscoamylogram. However, they differed significantly with respect to the viscosity at 95 °C and the degree of set-back. These differences were more pronounced in pinto bean starches. The extent of syneresis followed the order: black bean>chick pea∼lentil>smooth pea>navy bean>pinto bean. Differences in physicochemical properties were more marked among cultivars of black bean, and between cultivars of chick pea and smooth pea starches. This study showed that black bean and pinto bean starches differed significantly from each other, and from the other starches, with respect to the magnitude of interaction between starch chains within the amorphous and crystalline domains.  相似文献   

11.
The effects of annealing (ANN) and heat-moisture treatments (HMT) on the physicochemical and functional properties of Sword bean starches were investigated. The pasting properties differ significantly among the starches, with peak viscosity ranging from 399.17 RVU to 438.33 RVU; however, all the starches exhibited ‘Type C’ class with restricted swelling. The HMT starches had the highest gelatinization temperature, while change in enthalpy of gelatinization, ΔHgel of the native starch, was higher (13.82 J/g) than that of the modified starches (1.39–6.74 J/g). The solubility and swelling power of all the starches increased as the temperature increased. The oil and water absorption capacity of the starches ranges between 3.24–3.91 g/g and 2.42–3.35 g/g, respectively. HMT (at 25 and 30% moisture level) changes the X-ray diffraction pattern of the starch from Type ‘B’ to Type ‘C’. The Scanning electron micrograph results revealed the starch granules with smooth ellipsoids and indentation in their centre, hydrothermal modification showed little effect on the morphology and size of the granules. Hydrothermal modification improved the physicochemical and functional properties of the starch without destroying the granule of the starch.  相似文献   

12.
杨红丹  杜双奎  周丽卿  赵佳 《食品科学》2010,31(21):186-190
以豇豆(Vigna unguiculata (L.) Walp.)、小黑芸豆(Phaseolus vulgaris L.)和小扁豆(Lens culinaris M.)为材料,采用湿磨法提取淀粉,以马铃薯淀粉和玉米淀粉作对照,对淀粉理化性质进行比较研究。结果表明,豇豆、小黑芸豆和小扁豆淀粉颗粒多为肾形,少数圆形,且偏光十字明显,表观直链淀粉含量分别为34.98%、45.35% 和37.24%。3 种淀粉的膨胀度和溶解度均随温度升高而增加,起糊温度在72.9~77.0℃之间,小黑芸豆淀粉起糊温度最高,峰值黏度、破损值、最终黏度和回生值最低。豇豆淀粉糊化特性与小黑芸豆淀粉相反,起糊温度较低,峰值黏度、破损值、最终黏度和回生值最高。3 种豆类淀粉To、Tp 和Tc 具有显著性差异,但焓值差异不显著,焓值大小顺序为小扁豆淀粉>豇豆淀粉>小黑芸豆淀粉。  相似文献   

13.
Interaction of wheat and rice starches with yellow mustard mucilage   总被引:1,自引:0,他引:1  
The effect of yellow mustard mucilage (YMM) on gelatinization and retrogradation of wheat and rice starches were studied. Considerable interactions were observed between YMM and wheat and rice starches which were accompanied by a marked increase in viscosity. DSC studies showed that the presence of YMM did not affect peak gelatinization temperature (Tp) of wheat and rice starches, but slightly increased melting enthalpy (ΔH) and the phase transition temperature range (TcT0). Addition of YMM markedly changed wheat and rice starch gel textures by increasing hardness, adhesiveness, chewiness and springiness. The addition of YMM–locust bean gum (LBG) mixture (9:1) similarly increased the viscosity of wheat and rice starches but decreased gel hardness. The swelling power as well as solubilized starch and amylose were decreased for both starches in the presence of YMM. Syneresis in wheat and rice starches was also decreased by the presence of YMM.  相似文献   

14.
Mung bean starch was subjected to a range of heat-moisture treatments (HMT) based on different moisture contents (15%, 20%, 25%, 30%, and 35%) all heated at 120 °C for 12 h. The impact on the yields of resistant starch (RS), and the microstructure, physicochemical and functional properties of RS was investigated. Compared to raw starch, the RS content of HMT starch increased significantly, with the starch treated at 20% moisture having the highest RS content. After HMT, birefringence remained at the periphery of the granules and was absent at the center of some granules. The shape and integrity of HMT starch granules did not change but concavity was observed under scanning electronic microscopy. Apparent amylose contents of HMT starch increased and the HMT starch was dominated by high molecular weight fraction. Both the native and HMT starches showed A-type X-ray diffraction pattern. Relative crystallinity increased after HMT. The gelatinization temperatures (To, Tp, and Tc), gelatinization temperature range (Tc–To) and enthalpies of gelatinization (ΔH) increased significantly in HMT starch compared to native starch. The solubility increased but swelling power decreased in HMT starches. This study clearly shows that the HMT exhibited thermal stability and resistance to enzymatic hydrolysis owing to stronger interactions of starch chains in granule.  相似文献   

15.
The velvet bean (Mucuna pruriens) is an excellent potential starch source as it contains approximately 52 % of this carbohydrate. The physicochemical and functional properties of velvet bean starch were evaluated and compared to those of other starches. The chemical composition was: moisture 10.78 %; solid matter: protein 0.71 %; fiber 0.54 %; ash 0.28 %; fat 0.40 %; starch 98.1 %; and phosphorus 0.015 %. Amylose content was higher (39.21 %) than in tuber and cereal starches but similar to other legume starches. Average granule size was 23.6 μm, granules having an oval shape. Paste properties were: gelatinization temperature, 74.82 °C; gelatinization temperature range, 70—80 °C; and alkali number, 3.22. Gels produced with velvet bean starch were firmer than those produced with corn starch, and had a higher degree of retrogradation, even at high concentrations. At 90 °C, solubility was 16.2 % and swelling power was 16.17 g of water/g of starch. Given these properties, velvet bean starch has potential applications in food products requiring high temperature processing, such as jams, jellies and canned products.  相似文献   

16.
为了探讨"宜糖"米粉丝和绿豆粉丝品质差异的原因,对2种淀粉的理化性质和热力学特性进行了比较。研究表明2,种淀粉在理化性质方面的差异为:"宜糖"米淀粉的持水性是绿豆淀粉的1.6倍,透光率是绿豆淀粉的40%,溶解度显著高于绿豆淀粉。2种淀粉在热力学方面的差异为:"宜糖"米淀粉的凝胶强度是绿豆淀粉的45%,热焓值是绿豆淀粉的60%,冷藏缩水率显著低于绿豆淀粉。"宜糖"米粉丝比绿豆粉丝品质差的原因可能与"宜糖"米淀粉具有较高的持水性和溶解度,较低的透光率、凝胶强度、冷藏缩水率和热焓值有关。  相似文献   

17.
The restriction of gelatinization of the legume starches, which were isolated from Phaseolus vulgaris species, was studied in terms of enzymatic digestion, light microscopic observation, measurements of X-ray diffraction, viscosity, swelling power and solubility, when the legume starch slurries were heated in step by step manner at a given rate from moderate temperature up to 90°C. Three legume starches tested showed a remarkable restriction of gelatinization, although these phenomena were not always observed in the legume starch slurry alone. Such restriction of gelatinization, however, was not observed in the waxy starch or starches which contain few amylose fractions. The formation of starch-lipid complex was ruled out as a cause because the defat treatment did not reduce the restricted gelatinization of legume starch and high amylose corn starch. From the data presented, it was suggested that physical modification of starch slurry containing amylose fraction induced the hysteretic, mutual alteration of the starch macromolecules.  相似文献   

18.
采用差示扫描量热仪、热重分析仪和X-射线衍射仪研究绿豆淀粉、木薯淀粉、甘薯淀粉和马铃薯淀粉对HCl/KOH法制备的淀粉-脂肪酸包合物糊化和热分解性质、玻璃化转变温度(T_g)、结晶结构等的影响。研究表明,淀粉与脂肪酸复合后晶型变为V型。在薯类淀粉-硬脂酸包合物中,马铃薯淀粉-硬脂酸包合物的糊化温度、T_g和热分解稳定性最高,木薯淀粉-硬脂酸包合物的糊化温度、T_g和热分解稳定性最低。在薯类淀粉-油酸包合物中,木薯淀粉-油酸包合物的糊化焓值(?H)最高,热分解稳定性最小;甘薯淀粉-油酸包合物的?H最低,热分解稳定性最大。比较马铃薯淀粉和绿豆淀粉,马铃薯淀粉-硬脂酸包合物的糊化温度、热分解稳定性高于绿豆淀粉-硬脂酸包合物;马铃薯淀粉-油酸包合物的?H和T_g高于绿豆淀粉-油酸包合物。  相似文献   

19.
African yam bean (Sphenostylis stenocarpa) starch was subjected to heat moisture treatments at 18% (HMT-18), 21% (HMT-21), 24% (HMT-24), 27% (HMT-27) and excess (Annealing) moisture levels. Proximate chemical composition of the starch samples revealed that the moisture content of the starches ranged between 6.7% and 12.5%. Following modification of the native starch, there was a reduction in the moisture level of the heat moisture treated starches from HMT-18 to HMT-27. However, the annealed starch (HMT-ANN) retained higher moisture content compared to native starch (AYB-Native). The carbohydrate, protein, ash, amylose and fat content reduced with all the forms of heat treatments. At the temperature range studied (60–90 °C), increasing level of heat moisture treatments reduced the solubility and swelling capacity. pH also exert a profound effect both on the solubility and the swelling of the starch. Increasing degree of alkalinity increased both solubility and swelling capacity. In the native and modified starch samples, replacement of the wheat flour by the starch resulted in increased alkaline water retention of the blends. Water absorption capacity of the starch increased with the severity of moisture treatments, while the oil absorption capacity decreased. Apart from HMT-18, there was improved gel forming capacity of all the other heat-modified starches.Pasting temperature increased after hydrothermal modifications, whereas peak viscosity (Pv), Hot Paste Viscosity (Hv), setback and breakdown values all reduced after heat moisture treatments. All the starches were of type-B viscosity.Differential scanning calorimetry studies revealed that heat moisture treatment shifted the onset temperature (To), peak temperature(Tp) and conclusion temperature (Tc) to higher values. The gelatinisation temperature of the annealed starch was comparable to native starch. In addition, gelatinisation band of the native starch increased progressively from HMT-18 to HMT-27. Heat moisture treatment reduced the gelatinsation enthalpy (ΔH), while the enthalpy of retrogradation(ΔHr) increased with the storage time of the gelatinised starch. Retrogradation enthalpy of the heat moisture conditioned starches were lower than the value obtained for the native starch.X-ray diffraction studies of the starch indicated that all the starch samples showed the type-C diffraction pattern. Differences were however observed in their degree of crystallinity. Native starch exhibited the lowest crystallinity (20%) while annealed starch had the highest crystallinity (27%)Microscopy studies revealed surface indentation, formation of groves in the central region, folding of starch granules and formation of doughnut-like appearance in some of the starch samples.  相似文献   

20.
Starches from potato (Mainechip, ND651-9 and Commercial) and Navy and Pinto bean were isolated and the pasting and thermal properties examined. Analysis by Rapid Visco-Analyzer (RVA) showed potato starches had lower pasting temperatures, higher peak viscosity, and lower setback than bean starches. High intrinsic viscosity values obtained for the potato starch indicated higher average molecular weight for the potato starches compared to the bean starches. Characterization of thermal (gelatinization and retrogradation) properties of starches by Differential Scanning Calorimetry (DSC) showed that potato starches had sharp, well-defined gelatinization thermograms, while bean starches had broad, shallow thermograms with higher peak temperature (Tp). Potato starches required higher gelatinization enthalpies than bean starches. In comparison with gelatinization, the retrogradation thermograms of starches stored at three different temperatures (23,4 and −10°C) were broader and occurred at the lower temperatures. Compared to potato starches, Navy and pinto bean starches showed a higher retrogradation enthalpy at 4 and 23°C storage temperatures, but a lower enthalpy at −10°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号